Geometric series of positive linear operators and the inverse Voronovskaya theorem on a compact interval

We define the associated geometric series for a large class of positive linear operators and study the convergence of the series in the case of sequences of admissible operators. We obtain an inverse Voronovskaya theorem and we apply our results to the Bernstein operators and a class of Bernstein–Du...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of approximation theory Ročník 184; s. 163 - 175
Hlavní autori: Abel, Ulrich, Ivan, Mircea, Păltănea, Radu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.08.2014
Predmet:
ISSN:0021-9045, 1096-0430
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We define the associated geometric series for a large class of positive linear operators and study the convergence of the series in the case of sequences of admissible operators. We obtain an inverse Voronovskaya theorem and we apply our results to the Bernstein operators and a class of Bernstein–Durrmeyer type operators.
AbstractList We define the associated geometric series for a large class of positive linear operators and study the convergence of the series in the case of sequences of admissible operators. We obtain an inverse Voronovskaya theorem and we apply our results to the Bernstein operators and a class of Bernstein–Durrmeyer type operators.
Author Ivan, Mircea
Abel, Ulrich
Păltănea, Radu
Author_xml – sequence: 1
  givenname: Ulrich
  surname: Abel
  fullname: Abel, Ulrich
  email: Ulrich.Abel@mnd.thm.de
  organization: Technische Hochschule Mittelhessen, University of Applied Sciences, Department MND, Wilhelm-Leuschner-Straße 13, 61169 Friedberg, Germany
– sequence: 2
  givenname: Mircea
  surname: Ivan
  fullname: Ivan, Mircea
  email: Mircea.Ivan@math.utcluj.ro
  organization: Technical University of Cluj-Napoca, Department of Mathematics, Str. Memorandumului nr. 28, 400114 Cluj-Napoca, Romania
– sequence: 3
  givenname: Radu
  surname: Păltănea
  fullname: Păltănea, Radu
  email: radupaltanea@yahoo.com, radu.paltanea@unitbv.ro
  organization: “Transilvania” University of Braşov, Faculty of Mathematics and Computer Science, Str. Iuliu Maniu nr. 50, 500091 Braşov, Romania
BookMark eNp9kMtqwzAQRUVJoUnaD-hOP2B3ZMt2TFcl9AWBbtpuhSyPiVxbCiNhyN_XIV11kdUs5p55nBVbOO-QsXsBqQBRPvRpr2OagZApFCkIccWWAuoyAZnDgi0BMpHUIIsbtgqhhzlRFGLJ9q_oR4xkDQ9IFgP3HT_4YKOdkA_WoSbuD0g6egpcu5bHPXLrJqSA_NuTd34KP_qoTw1POHLvuObGjwdt4pyMSJMebtl1p4eAd391zb5enj-3b8nu4_V9-7RLTFZXMREtZm23mc-rUJZ5VjSyEy1gtpFl1cgGM5M3tQC5KQTWmFeAjWnzykiDjTA6X7PqPNeQD4GwU8ZGHa13kbQdlAB1EqZ6NQtTJ2EKCjXvm0nxjzyQHTUdLzKPZwbnlyaLpIKx6Ay2ltBE1Xp7gf4FA0CIKQ
CitedBy_id crossref_primary_10_1007_s00009_019_1313_2
crossref_primary_10_1016_j_jmaa_2023_127868
crossref_primary_10_33205_cma_506015
crossref_primary_10_1007_s00025_018_0795_8
crossref_primary_10_1016_j_amc_2014_09_049
crossref_primary_10_1007_s11117_014_0293_5
Cites_doi 10.1007/s00025-009-0363-3
10.1016/j.jmaa.2003.11.056
10.1006/jmaa.1997.5371
10.2140/pjm.1967.21.511
10.1007/s10587-010-0049-8
10.1007/s00009-010-0025-4
10.1016/j.jat.2008.11.002
10.1016/j.jat.2011.02.012
10.1006/jath.1996.3039
10.1007/s00009-011-0154-4
10.1080/00029890.2009.11920969
10.1016/0021-9045(76)90076-9
10.1007/s10474-006-0038-4
10.1016/j.jmaa.2010.07.026
10.1016/j.jmaa.2012.10.061
10.1016/0021-9045(80)90120-3
10.4153/CJM-1964-023-1
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright_xml – notice: 2014 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jat.2014.05.011
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-0430
EndPage 175
ExternalDocumentID 10_1016_j_jat_2014_05_011
S0021904514000951
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACKIV
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
M25
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
WH7
WUQ
XOL
XPP
YQT
ZCG
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-1de2df80117e46325b4f1d0e28467b4be2c3b9104851e9e370ebcd37c4ceb1ca3
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000338399100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9045
IngestDate Sat Nov 29 07:25:59 EST 2025
Tue Nov 18 22:31:40 EST 2025
Fri Feb 23 02:23:11 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Bernstein operators
41A35
41A36
Inverse Voronovskaya theorem
Series of operators
Positive linear operators
41A27
Bernstein–Durrmeyer type operators
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-1de2df80117e46325b4f1d0e28467b4be2c3b9104851e9e370ebcd37c4ceb1ca3
OpenAccessLink https://dx.doi.org/10.1016/j.jat.2014.05.011
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_jat_2014_05_011
crossref_primary_10_1016_j_jat_2014_05_011
elsevier_sciencedirect_doi_10_1016_j_jat_2014_05_011
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of approximation theory
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Gonska, Păltănea (br000065) 2010; 60
Raşa (br000130) 2012; 9
Jessen (br000080) 1931
Kelisky, Rivlin (br000090) 1967; 21
Gavrea, Ivan (br000045) 2010; 372
Gonska, Heilmann, Raşa (br000055) 2009; 160
Wenz (br000140) 1997; 89
Nagel (br000105) 1980; 29
Nielson, Riesenfeld, Weiss (br000110) 1976; 17
Gonska, Păltănea (br000060) 2010; 7
Cheney, Sharma (br000040) 1964; 16
Gavrea, Ivan (br000050) 2011; 163
Korovkin (br000095) 1959
A. Lupaş, Contribution to the Theory of Approximation by Linear Operators, Thesis, Cluj, 1976 (in Romanian).
Altomare, Diomede (br000025) 2010; 2
Kacsó (br000085) 2009; 54
Gonska, Raşa (br000070) 2006; 111
Păltănea (br000120) 2004
Abel (br000005) 2009; 15
Abel, Ivan, Păltănea (br000015) 2013; 400
Goodman, Sharma (br000075) 1988
Păltănea (br000125) 2007; 5
Abel, Ivan (br000010) 2009; 116
Adell, Badía, de la Cal (br000020) 1997; 209
Păltănea (br000115) 2006; 15
Chang, Shan (br000030) 1983; 3
W. Chen, On the modified Durrmeyer–Bernstein operator, in: Report of the Fifth Chinese Conference on Approximation Theory, Zhen Zhou, China, 1987 (in Chinese).
Rus (br000135) 2004; 292
Gavrea (10.1016/j.jat.2014.05.011_br000045) 2010; 372
Păltănea (10.1016/j.jat.2014.05.011_br000120) 2004
Rus (10.1016/j.jat.2014.05.011_br000135) 2004; 292
10.1016/j.jat.2014.05.011_br000035
Abel (10.1016/j.jat.2014.05.011_br000005) 2009; 15
Abel (10.1016/j.jat.2014.05.011_br000010) 2009; 116
Nagel (10.1016/j.jat.2014.05.011_br000105) 1980; 29
Gonska (10.1016/j.jat.2014.05.011_br000065) 2010; 60
Nielson (10.1016/j.jat.2014.05.011_br000110) 1976; 17
Gonska (10.1016/j.jat.2014.05.011_br000070) 2006; 111
Goodman (10.1016/j.jat.2014.05.011_br000075) 1988
Korovkin (10.1016/j.jat.2014.05.011_br000095) 1959
Altomare (10.1016/j.jat.2014.05.011_br000025) 2010; 2
Wenz (10.1016/j.jat.2014.05.011_br000140) 1997; 89
Kelisky (10.1016/j.jat.2014.05.011_br000090) 1967; 21
Păltănea (10.1016/j.jat.2014.05.011_br000125) 2007; 5
10.1016/j.jat.2014.05.011_br000100
Păltănea (10.1016/j.jat.2014.05.011_br000115) 2006; 15
Gonska (10.1016/j.jat.2014.05.011_br000060) 2010; 7
Kacsó (10.1016/j.jat.2014.05.011_br000085) 2009; 54
Abel (10.1016/j.jat.2014.05.011_br000015) 2013; 400
Cheney (10.1016/j.jat.2014.05.011_br000040) 1964; 16
Adell (10.1016/j.jat.2014.05.011_br000020) 1997; 209
Gonska (10.1016/j.jat.2014.05.011_br000055) 2009; 160
Jessen (10.1016/j.jat.2014.05.011_br000080) 1931
Raşa (10.1016/j.jat.2014.05.011_br000130) 2012; 9
Chang (10.1016/j.jat.2014.05.011_br000030) 1983; 3
Gavrea (10.1016/j.jat.2014.05.011_br000050) 2011; 163
References_xml – volume: 111
  start-page: 119
  year: 2006
  end-page: 130
  ident: br000070
  article-title: The limiting semigroup of the Bernstein iterates: degree of convergence
  publication-title: Acta Math. Hungar.
– year: 1959
  ident: br000095
  article-title: Linear Operators and Approximation Theory
– volume: 163
  start-page: 1076
  year: 2011
  end-page: 1079
  ident: br000050
  article-title: On the iterates of positive linear operators
  publication-title: J. Approx. Theory
– volume: 372
  start-page: 366
  year: 2010
  end-page: 368
  ident: br000045
  article-title: On the iterates of positive linear operators preserving the linear functions
  publication-title: J. Math. Anal. Appl.
– volume: 15
  start-page: 247
  year: 2006
  end-page: 253
  ident: br000115
  article-title: The power series of Bernstein operators
  publication-title: Automat. Comput. Appl. Math.
– volume: 60
  start-page: 783
  year: 2010
  end-page: 799
  ident: br000065
  article-title: Simultaneous approximation by a class of Bernstein–Durrmeyer operators preserving linear functions
  publication-title: Czechoslovak Math. J.
– volume: 54
  start-page: 85
  year: 2009
  end-page: 101
  ident: br000085
  article-title: Estimates for iterates of positive linear operators preserving linear functions
  publication-title: Results Math.
– volume: 2
  start-page: 255
  year: 2010
  end-page: 287
  ident: br000025
  article-title: Asymptotic formulae for positive linear operators: direct and converse results
  publication-title: Jaen J. Approx.
– volume: 17
  start-page: 321
  year: 1976
  end-page: 331
  ident: br000110
  article-title: Iterates of Markov operators
  publication-title: J. Approx. Theory
– volume: 292
  start-page: 259
  year: 2004
  end-page: 261
  ident: br000135
  article-title: Iterates of Bernstein operators via contraction principle
  publication-title: J. Math. Anal. Appl.
– volume: 3
  start-page: 145
  year: 1983
  end-page: 146
  ident: br000030
  article-title: A simple proof for a theorem of Kelisky and Rivlin
  publication-title: J. Math. Res. Exposition
– volume: 16
  start-page: 241
  year: 1964
  end-page: 252
  ident: br000040
  article-title: Bernstein power series
  publication-title: Canad. J. Math.
– volume: 21
  start-page: 511
  year: 1967
  end-page: 520
  ident: br000090
  article-title: Iterates of Bernstein polynomials
  publication-title: Pacific J. Math.
– volume: 209
  start-page: 529
  year: 1997
  end-page: 541
  ident: br000020
  article-title: On the iterates of some Bernstein-type operators
  publication-title: J. Math. Anal. Appl.
– volume: 15
  start-page: 439
  year: 2009
  end-page: 450
  ident: br000005
  article-title: Geometric series of Bernstein–Durrmeyer operators
  publication-title: East J. Approx.
– year: 2004
  ident: br000120
  article-title: Approximation Theory Using Positive Linear Operators
– volume: 160
  start-page: 243
  year: 2009
  end-page: 255
  ident: br000055
  article-title: Convergence of iterates of genuine and ultraspherical Durrmeyer operators to the limiting semigroup: C2-estimates
  publication-title: J. Approx. Theory
– reference: A. Lupaş, Contribution to the Theory of Approximation by Linear Operators, Thesis, Cluj, 1976 (in Romanian).
– volume: 9
  start-page: 635
  year: 2012
  end-page: 644
  ident: br000130
  article-title: Power series of Bernstein operators and approximation resolvents
  publication-title: Mediterr. J. Math.
– start-page: 166
  year: 1988
  end-page: 173
  ident: br000075
  article-title: A modified Bernstein–Schoenberg operator
  publication-title: Proc. of the Conference on Constructive Theory of Functions, Varna 1987
– start-page: 17
  year: 1931
  end-page: 28
  ident: br000080
  article-title: Bemærkninger om konvekse Funktioner og Uligheder imellem Middelværdier. I
  publication-title: Mat. Tidsskr. B
– volume: 29
  start-page: 323
  year: 1980
  end-page: 335
  ident: br000105
  article-title: Asymptotic properties of powers of Bernstein operators
  publication-title: J. Approx. Theory
– reference: W. Chen, On the modified Durrmeyer–Bernstein operator, in: Report of the Fifth Chinese Conference on Approximation Theory, Zhen Zhou, China, 1987 (in Chinese).
– volume: 89
  start-page: 219
  year: 1997
  end-page: 237
  ident: br000140
  article-title: On the limits of (linear combinations of) iterates of linear operators
  publication-title: J. Approx. Theory
– volume: 5
  start-page: 109
  year: 2007
  end-page: 117
  ident: br000125
  article-title: A class of Durrmeyer type operators preserving linear functions
  publication-title: Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity
– volume: 116
  start-page: 535
  year: 2009
  end-page: 538
  ident: br000010
  article-title: Over-iterates of Bernstein’s operators: a short and elementary proof
  publication-title: Amer. Math. Monthly
– volume: 7
  start-page: 37
  year: 2010
  end-page: 49
  ident: br000060
  article-title: General Voronovskaya and asymptotic theorems in simultaneous approximation
  publication-title: Mediterr. J. Math.
– volume: 400
  start-page: 22
  year: 2013
  end-page: 24
  ident: br000015
  article-title: Geometric series of Bernstein operators revisited
  publication-title: J. Math. Anal. Appl.
– volume: 54
  start-page: 85
  year: 2009
  ident: 10.1016/j.jat.2014.05.011_br000085
  article-title: Estimates for iterates of positive linear operators preserving linear functions
  publication-title: Results Math.
  doi: 10.1007/s00025-009-0363-3
– volume: 292
  start-page: 259
  year: 2004
  ident: 10.1016/j.jat.2014.05.011_br000135
  article-title: Iterates of Bernstein operators via contraction principle
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2003.11.056
– volume: 209
  start-page: 529
  year: 1997
  ident: 10.1016/j.jat.2014.05.011_br000020
  article-title: On the iterates of some Bernstein-type operators
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1997.5371
– volume: 21
  start-page: 511
  year: 1967
  ident: 10.1016/j.jat.2014.05.011_br000090
  article-title: Iterates of Bernstein polynomials
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.1967.21.511
– volume: 60
  start-page: 783
  issue: 135
  year: 2010
  ident: 10.1016/j.jat.2014.05.011_br000065
  article-title: Simultaneous approximation by a class of Bernstein–Durrmeyer operators preserving linear functions
  publication-title: Czechoslovak Math. J.
  doi: 10.1007/s10587-010-0049-8
– volume: 2
  start-page: 255
  year: 2010
  ident: 10.1016/j.jat.2014.05.011_br000025
  article-title: Asymptotic formulae for positive linear operators: direct and converse results
  publication-title: Jaen J. Approx.
– volume: 7
  start-page: 37
  year: 2010
  ident: 10.1016/j.jat.2014.05.011_br000060
  article-title: General Voronovskaya and asymptotic theorems in simultaneous approximation
  publication-title: Mediterr. J. Math.
  doi: 10.1007/s00009-010-0025-4
– volume: 160
  start-page: 243
  year: 2009
  ident: 10.1016/j.jat.2014.05.011_br000055
  article-title: Convergence of iterates of genuine and ultraspherical Durrmeyer operators to the limiting semigroup: C2-estimates
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2008.11.002
– ident: 10.1016/j.jat.2014.05.011_br000100
– volume: 163
  start-page: 1076
  year: 2011
  ident: 10.1016/j.jat.2014.05.011_br000050
  article-title: On the iterates of positive linear operators
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2011.02.012
– start-page: 17
  year: 1931
  ident: 10.1016/j.jat.2014.05.011_br000080
  article-title: Bemærkninger om konvekse Funktioner og Uligheder imellem Middelværdier. I
  publication-title: Mat. Tidsskr. B
– year: 1959
  ident: 10.1016/j.jat.2014.05.011_br000095
– volume: 89
  start-page: 219
  year: 1997
  ident: 10.1016/j.jat.2014.05.011_br000140
  article-title: On the limits of (linear combinations of) iterates of linear operators
  publication-title: J. Approx. Theory
  doi: 10.1006/jath.1996.3039
– volume: 15
  start-page: 247
  issue: 2
  year: 2006
  ident: 10.1016/j.jat.2014.05.011_br000115
  article-title: The power series of Bernstein operators
  publication-title: Automat. Comput. Appl. Math.
– volume: 3
  start-page: 145
  year: 1983
  ident: 10.1016/j.jat.2014.05.011_br000030
  article-title: A simple proof for a theorem of Kelisky and Rivlin
  publication-title: J. Math. Res. Exposition
– volume: 9
  start-page: 635
  year: 2012
  ident: 10.1016/j.jat.2014.05.011_br000130
  article-title: Power series of Bernstein operators and approximation resolvents
  publication-title: Mediterr. J. Math.
  doi: 10.1007/s00009-011-0154-4
– volume: 116
  start-page: 535
  year: 2009
  ident: 10.1016/j.jat.2014.05.011_br000010
  article-title: Over-iterates of Bernstein’s operators: a short and elementary proof
  publication-title: Amer. Math. Monthly
  doi: 10.1080/00029890.2009.11920969
– volume: 17
  start-page: 321
  year: 1976
  ident: 10.1016/j.jat.2014.05.011_br000110
  article-title: Iterates of Markov operators
  publication-title: J. Approx. Theory
  doi: 10.1016/0021-9045(76)90076-9
– year: 2004
  ident: 10.1016/j.jat.2014.05.011_br000120
– volume: 111
  start-page: 119
  year: 2006
  ident: 10.1016/j.jat.2014.05.011_br000070
  article-title: The limiting semigroup of the Bernstein iterates: degree of convergence
  publication-title: Acta Math. Hungar.
  doi: 10.1007/s10474-006-0038-4
– volume: 372
  start-page: 366
  year: 2010
  ident: 10.1016/j.jat.2014.05.011_br000045
  article-title: On the iterates of positive linear operators preserving the linear functions
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2010.07.026
– volume: 400
  start-page: 22
  year: 2013
  ident: 10.1016/j.jat.2014.05.011_br000015
  article-title: Geometric series of Bernstein operators revisited
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2012.10.061
– volume: 29
  start-page: 323
  year: 1980
  ident: 10.1016/j.jat.2014.05.011_br000105
  article-title: Asymptotic properties of powers of Bernstein operators
  publication-title: J. Approx. Theory
  doi: 10.1016/0021-9045(80)90120-3
– volume: 16
  start-page: 241
  year: 1964
  ident: 10.1016/j.jat.2014.05.011_br000040
  article-title: Bernstein power series
  publication-title: Canad. J. Math.
  doi: 10.4153/CJM-1964-023-1
– start-page: 166
  year: 1988
  ident: 10.1016/j.jat.2014.05.011_br000075
  article-title: A modified Bernstein–Schoenberg operator
– volume: 15
  start-page: 439
  year: 2009
  ident: 10.1016/j.jat.2014.05.011_br000005
  article-title: Geometric series of Bernstein–Durrmeyer operators
  publication-title: East J. Approx.
– volume: 5
  start-page: 109
  year: 2007
  ident: 10.1016/j.jat.2014.05.011_br000125
  article-title: A class of Durrmeyer type operators preserving linear functions
  publication-title: Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity
– ident: 10.1016/j.jat.2014.05.011_br000035
SSID ssj0011551
Score 2.021058
Snippet We define the associated geometric series for a large class of positive linear operators and study the convergence of the series in the case of sequences of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 163
SubjectTerms Bernstein operators
Bernstein–Durrmeyer type operators
Inverse Voronovskaya theorem
Positive linear operators
Series of operators
Title Geometric series of positive linear operators and the inverse Voronovskaya theorem on a compact interval
URI https://dx.doi.org/10.1016/j.jat.2014.05.011
Volume 184
WOSCitedRecordID wos000338399100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0430
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0011551
  issn: 0021-9045
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKxgEOiJ9i_JIPnKgyxYkTJ8cKDRhi0w4b6i1y7FfR0iVVmkXdf7E_mefY8QoDBEhc0iqqk6e8r89f_L73TMjr0KSCUpYFIi15wHXGgrIMkyCNZKRB6SyZ9YXCn8TxcTad5iej0dVQC9MtRVVlm02--q-uxnPobFM6-xfu9hfFE_gdnY5HdDse_8jx76E-N9tkqbG5ne0pa6VZHYwNqZTNuF5Bn15fewHlvDL6DBh_Nh0N6m79VV5KV-V4bhIK0qrVVds3mGg6Z8VNWts3Kd_MbUWkvYJftZ-UVhNwtkTz_Dr0octFHc0bBX6WOOlpbrxs7Sea3aNB6ovthQrGvUzOrZ4NFTTfCTydRMS2lNwHG4RDI4zmLl_jozTfirPMRUU7ZTO7-cqN2cAuTCz2F9KoZhm3PVrZ9dTnBYkmZ82MGfi-2bPOW2Q3EkmOoX53cngw_egzU4ZiWtmQtXvIlPeawR9u9HOus8VfTu-Te85DdGIB84CMoHpI7h75rr3rR-SLhw610KH1jA7QoRY61EOHInQojqYOOnQbOtRBh9YVldRBhw7QeUzO3h2cvv0QuJ04AhXlog2YhkjPMtM_EHgaR0nJZ0yHEBn2WvISIhWXSDw58nfIIRYhlErHQnGFXEDJ-AnZqeoKnhKKIUClpQY-izmXeZqB4qGOIRGxFiKP9kg4PLNCuTb1ZreUZTHoERcFPubCPOYiTAq0aY-88UNWtkfL737MB0cUjmRa8lggan497Nm_DXtO7lz_FV6Qnba5gJfktura-bp55bD1DYDEoow
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+series+of+positive+linear+operators+and+the+inverse+Voronovskaya+theorem+on+a+compact+interval&rft.jtitle=Journal+of+approximation+theory&rft.au=Abel%2C+Ulrich&rft.au=Ivan%2C+Mircea&rft.au=P%C4%83lt%C4%83nea%2C+Radu&rft.date=2014-08-01&rft.pub=Elsevier+Inc&rft.issn=0021-9045&rft.eissn=1096-0430&rft.volume=184&rft.spage=163&rft.epage=175&rft_id=info:doi/10.1016%2Fj.jat.2014.05.011&rft.externalDocID=S0021904514000951
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9045&client=summon