Approximation on variable exponent spaces by linear integral operators
This paper aims at approximation of functions by linear integral operators on variable exponent spaces associated with a general exponent function on a domain of a Euclidean space. Under a log-Hölder continuity assumption of the exponent function, we present quantitative estimates for the approximat...
Uložené v:
| Vydané v: | Journal of approximation theory Ročník 223; s. 29 - 51 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.11.2017
|
| Predmet: | |
| ISSN: | 0021-9045, 1096-0430 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper aims at approximation of functions by linear integral operators on variable exponent spaces associated with a general exponent function on a domain of a Euclidean space. Under a log-Hölder continuity assumption of the exponent function, we present quantitative estimates for the approximation and solve an open problem raised in our earlier work. As applications of our key estimates, we provide high orders of approximation by quasi-interpolation type and linear combinations of Bernstein type integral operators on variable exponent spaces. We also introduce K-functionals and moduli of smoothness on variable exponent spaces and discuss their relationships and applications. |
|---|---|
| ISSN: | 0021-9045 1096-0430 |
| DOI: | 10.1016/j.jat.2017.07.009 |