Robust Control of Positive Fractional‐Order Interconnected Systems with Heterogeneous Delays
The problem of robust decentralized control of positive fractional‐order interconnected systems with heterogeneous time‐varying delays is studied in this paper. Necessary and sufficient conditions are first derived for internal positiveness of the system. By exploiting the monotonicity induced from...
Saved in:
| Published in: | Asian journal of control Vol. 21; no. 1; pp. 596 - 608 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
Wiley Subscription Services, Inc
01.01.2019
|
| Subjects: | |
| ISSN: | 1561-8625, 1934-6093 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The problem of robust decentralized control of positive fractional‐order interconnected systems with heterogeneous time‐varying delays is studied in this paper. Necessary and sufficient conditions are first derived for internal positiveness of the system. By exploiting the monotonicity induced from positivity of the system, robust stability conditions subject to uncertain system parameters are derived. The derived stability conditions are then utilized to address the controller synthesis problem. The design conditions for obtaining controller gains of stabilizing decentralized controllers are formulated using linear programming, which can be effectively solved by various convex optimization algorithms. Finally, the effectiveness of the obtained results is validated by two numerical examples. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1561-8625 1934-6093 |
| DOI: | 10.1002/asjc.1739 |