Robust Control of Positive Fractional‐Order Interconnected Systems with Heterogeneous Delays

The problem of robust decentralized control of positive fractional‐order interconnected systems with heterogeneous time‐varying delays is studied in this paper. Necessary and sufficient conditions are first derived for internal positiveness of the system. By exploiting the monotonicity induced from...

Full description

Saved in:
Bibliographic Details
Published in:Asian journal of control Vol. 21; no. 1; pp. 596 - 608
Main Authors: Le, Hien Van, Chu, Kinh Trong
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 01.01.2019
Subjects:
ISSN:1561-8625, 1934-6093
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The problem of robust decentralized control of positive fractional‐order interconnected systems with heterogeneous time‐varying delays is studied in this paper. Necessary and sufficient conditions are first derived for internal positiveness of the system. By exploiting the monotonicity induced from positivity of the system, robust stability conditions subject to uncertain system parameters are derived. The derived stability conditions are then utilized to address the controller synthesis problem. The design conditions for obtaining controller gains of stabilizing decentralized controllers are formulated using linear programming, which can be effectively solved by various convex optimization algorithms. Finally, the effectiveness of the obtained results is validated by two numerical examples.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1561-8625
1934-6093
DOI:10.1002/asjc.1739