Inverse problems: From regularization to Bayesian inference
Inverse problems deal with the quest for unknown causes of observed consequences, based on predictive models, known as the forward models, that associate the former quantities to the latter in the causal order. Forward models are usually well‐posed, as causes determine consequences in a unique and s...
Saved in:
| Published in: | Wiley interdisciplinary reviews. Computational statistics Vol. 10; no. 3; pp. e1427 - n/a |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2018
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 1939-5108, 1939-0068 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Inverse problems deal with the quest for unknown causes of observed consequences, based on predictive models, known as the forward models, that associate the former quantities to the latter in the causal order. Forward models are usually well‐posed, as causes determine consequences in a unique and stable way. Inverse problems, on the other hand, are usually ill‐posed: the data may be insufficient to identify the cause unambiguously, an exact solution may not exist, and, like in a mystery story, discovering the cause without extra information tends to be highly sensitive to measurement noise and modeling errors. The Bayesian methodology provides a versatile and natural way of incorporating extra information to supplement the noisy data by modeling the unknown as a random variable to highlight the uncertainty about its value. Presenting the solution in the form of a posterior distribution provides a wide range of possibilities to compute useful estimates. Inverse problems are traditionally approached from the point of view of regularization, a process whereby the ill‐posed problem is replaced by a nearby well‐posed one. While many of the regularization techniques can be reinterpreted in the Bayesian framework through prior design, the Bayesian formalism provides new techniques to enrich the paradigm of traditional inverse problems. In particular, inaccuracies and inadequacies of the forward model are naturally handled in the statistical framework. Similarly, qualitative information about the solution may be reformulated in the form of priors with unknown parameters that can be successfully handled in the hierarchical Bayesian context.
This article is categorized under:
Statistical and Graphical Methods of Data Analysis > Bayesian Methods and Theory
Algorithms and Computational Methods > Numerical Methods
Applications of Computational Statistics > Computational Mathematics
In inverse problems, the ill‐posedness manifests itself in the form of a likelihood density whose support is wide in some directions, or more generally, along some manifolds, where no clear preference to parameter values is given. An informative prior efficiently restricts the support of the posterior density where the likelihood is non‐informative. |
|---|---|
| AbstractList | Inverse problems deal with the quest for unknown causes of observed consequences, based on predictive models, known as the forward models, that associate the former quantities to the latter in the causal order. Forward models are usually well‐posed, as causes determine consequences in a unique and stable way. Inverse problems, on the other hand, are usually ill‐posed: the data may be insufficient to identify the cause unambiguously, an exact solution may not exist, and, like in a mystery story, discovering the cause without extra information tends to be highly sensitive to measurement noise and modeling errors. The Bayesian methodology provides a versatile and natural way of incorporating extra information to supplement the noisy data by modeling the unknown as a random variable to highlight the uncertainty about its value. Presenting the solution in the form of a posterior distribution provides a wide range of possibilities to compute useful estimates. Inverse problems are traditionally approached from the point of view of regularization, a process whereby the ill‐posed problem is replaced by a nearby well‐posed one. While many of the regularization techniques can be reinterpreted in the Bayesian framework through prior design, the Bayesian formalism provides new techniques to enrich the paradigm of traditional inverse problems. In particular, inaccuracies and inadequacies of the forward model are naturally handled in the statistical framework. Similarly, qualitative information about the solution may be reformulated in the form of priors with unknown parameters that can be successfully handled in the hierarchical Bayesian context.
This article is categorized under:
Statistical and Graphical Methods of Data Analysis > Bayesian Methods and Theory
Algorithms and Computational Methods > Numerical Methods
Applications of Computational Statistics > Computational Mathematics
In inverse problems, the ill‐posedness manifests itself in the form of a likelihood density whose support is wide in some directions, or more generally, along some manifolds, where no clear preference to parameter values is given. An informative prior efficiently restricts the support of the posterior density where the likelihood is non‐informative. Inverse problems deal with the quest for unknown causes of observed consequences, based on predictive models, known as the forward models, that associate the former quantities to the latter in the causal order. Forward models are usually well‐posed, as causes determine consequences in a unique and stable way. Inverse problems, on the other hand, are usually ill‐posed: the data may be insufficient to identify the cause unambiguously, an exact solution may not exist, and, like in a mystery story, discovering the cause without extra information tends to be highly sensitive to measurement noise and modeling errors. The Bayesian methodology provides a versatile and natural way of incorporating extra information to supplement the noisy data by modeling the unknown as a random variable to highlight the uncertainty about its value. Presenting the solution in the form of a posterior distribution provides a wide range of possibilities to compute useful estimates. Inverse problems are traditionally approached from the point of view of regularization, a process whereby the ill‐posed problem is replaced by a nearby well‐posed one. While many of the regularization techniques can be reinterpreted in the Bayesian framework through prior design, the Bayesian formalism provides new techniques to enrich the paradigm of traditional inverse problems. In particular, inaccuracies and inadequacies of the forward model are naturally handled in the statistical framework. Similarly, qualitative information about the solution may be reformulated in the form of priors with unknown parameters that can be successfully handled in the hierarchical Bayesian context. This article is categorized under: Statistical and Graphical Methods of Data Analysis > Bayesian Methods and Theory Algorithms and Computational Methods > Numerical Methods Applications of Computational Statistics > Computational Mathematics Inverse problems deal with the quest for unknown causes of observed consequences, based on predictive models, known as the forward models, that associate the former quantities to the latter in the causal order. Forward models are usually well‐posed, as causes determine consequences in a unique and stable way. Inverse problems, on the other hand, are usually ill‐posed: the data may be insufficient to identify the cause unambiguously, an exact solution may not exist, and, like in a mystery story, discovering the cause without extra information tends to be highly sensitive to measurement noise and modeling errors. The Bayesian methodology provides a versatile and natural way of incorporating extra information to supplement the noisy data by modeling the unknown as a random variable to highlight the uncertainty about its value. Presenting the solution in the form of a posterior distribution provides a wide range of possibilities to compute useful estimates. Inverse problems are traditionally approached from the point of view of regularization, a process whereby the ill‐posed problem is replaced by a nearby well‐posed one. While many of the regularization techniques can be reinterpreted in the Bayesian framework through prior design, the Bayesian formalism provides new techniques to enrich the paradigm of traditional inverse problems. In particular, inaccuracies and inadequacies of the forward model are naturally handled in the statistical framework. Similarly, qualitative information about the solution may be reformulated in the form of priors with unknown parameters that can be successfully handled in the hierarchical Bayesian context.This article is categorized under:Statistical and Graphical Methods of Data Analysis > Bayesian Methods and TheoryAlgorithms and Computational Methods > Numerical MethodsApplications of Computational Statistics > Computational Mathematics |
| Author | Somersalo, E. Calvetti, D. |
| Author_xml | – sequence: 1 givenname: D. surname: Calvetti fullname: Calvetti, D. organization: Case Western Reserve University – sequence: 2 givenname: E. surname: Somersalo fullname: Somersalo, E. email: erkki.somersalo@case.edu organization: Case Western Reserve University |
| BookMark | eNp9kE1LAzEQhoNUsK0e_AcLnjxsO8l2P6InXawWCh5UPIZsdiIp26QmW0v99W4_ToIyhxmG552Pd0B61lkk5JLCiAKw8caoMKITlp-QPuUJjwGyonesUwrFGRmEsOi6eRd9cjuzX-gDRivvqgaX4SaaereMPH6sG-nNt2yNs1Hronu5xWCkjYzV6NEqPCenWjYBL455SN6mD6_lUzx_fpyVd_NYMZ7nsYJJXWQs0ayQdV2lGWc80RWkBWRaaWCFzhKkFDBhtIIaaFpPmOJZhSllmidDcnWY2934ucbQioVbe9utFAxYx3AOSUddHyjlXQgetVh5s5R-KyiInTdi543YedOx41-sMu3-09ZL0_yn2JgGt3-PFu-z8mWv-AH1yndq |
| CitedBy_id | crossref_primary_10_1007_s00348_025_04058_1 crossref_primary_10_1007_s11538_023_01165_0 crossref_primary_10_1063_5_0200684 crossref_primary_10_1177_14759217211004232 crossref_primary_10_1088_1361_6501_ad3c5c crossref_primary_10_1364_AO_541692 crossref_primary_10_1016_j_cma_2023_116690 crossref_primary_10_1016_j_neuroimage_2021_118309 crossref_primary_10_3390_machines11111018 crossref_primary_10_1038_s41598_024_71336_z crossref_primary_10_1016_j_measurement_2021_110256 crossref_primary_10_1088_1674_4527_ad283b crossref_primary_10_3390_rs16071187 crossref_primary_10_1016_j_electacta_2021_139010 crossref_primary_10_1016_j_neunet_2025_107740 crossref_primary_10_1137_20M1326246 crossref_primary_10_1093_gji_ggac241 crossref_primary_10_3788_COL202523_083401 crossref_primary_10_1016_j_jpowsour_2023_233845 crossref_primary_10_1002_adpr_202300308 crossref_primary_10_1016_j_oceaneng_2023_115833 crossref_primary_10_1016_j_cherd_2024_01_067 crossref_primary_10_1088_1361_6420_ab958e crossref_primary_10_1016_j_neuropsychologia_2023_108562 crossref_primary_10_1088_1361_6420_ad91db crossref_primary_10_1137_24M1643347 crossref_primary_10_1117_1_NPh_12_2_025011 crossref_primary_10_2514_1_J059203 crossref_primary_10_1093_gji_ggaf208 crossref_primary_10_1016_j_bspc_2022_103825 crossref_primary_10_1016_j_jhydrol_2025_134235 crossref_primary_10_1016_j_jsv_2024_118817 crossref_primary_10_1002_nme_7234 crossref_primary_10_1063_5_0149207 crossref_primary_10_1088_1361_6420_ad1348 crossref_primary_10_1016_j_jmsy_2024_12_011 crossref_primary_10_1088_1361_6463_ae0344 crossref_primary_10_1016_j_ijmecsci_2024_109210 crossref_primary_10_1109_TIM_2021_3117361 crossref_primary_10_1115_1_4066118 crossref_primary_10_1063_5_0226735 crossref_primary_10_1016_j_jmaa_2024_128403 crossref_primary_10_1016_j_joule_2024_05_008 crossref_primary_10_1063_5_0189267 crossref_primary_10_1109_RBME_2024_3486439 crossref_primary_10_1002_fld_5135 crossref_primary_10_1063_5_0219447 crossref_primary_10_1016_j_jag_2025_104759 crossref_primary_10_1080_22020586_2019_12072961 crossref_primary_10_3390_met13050997 crossref_primary_10_1002_sam_11679 crossref_primary_10_1016_j_ces_2025_121488 crossref_primary_10_1190_geo2020_0226_1 crossref_primary_10_1155_stc_4714219 crossref_primary_10_1103_PhysRevAccelBeams_25_052401 crossref_primary_10_5194_amt_13_1517_2020 crossref_primary_10_1002_gamm_202000014 crossref_primary_10_1016_j_electacta_2022_140119 crossref_primary_10_1088_1361_6420_aae04f crossref_primary_10_1162_jocn_a_01822 crossref_primary_10_3389_fphys_2021_653013 crossref_primary_10_1016_j_bspc_2022_103838 crossref_primary_10_1111_nrm_12332 crossref_primary_10_1007_s11565_022_00417_6 crossref_primary_10_1016_j_bpj_2024_11_3310 crossref_primary_10_1080_22020586_2019_12072959 crossref_primary_10_1016_j_cma_2022_115737 crossref_primary_10_1016_j_jvolgeores_2022_107470 crossref_primary_10_3934_ammc_2023005 crossref_primary_10_1016_j_cma_2023_116682 crossref_primary_10_1016_j_cma_2024_117359 crossref_primary_10_1137_21M1441420 crossref_primary_10_1016_j_cma_2025_118064 crossref_primary_10_1088_1361_6420_acd414 crossref_primary_10_1063_5_0154773 crossref_primary_10_1002_nme_70113 crossref_primary_10_1016_j_jocs_2024_102437 crossref_primary_10_1007_s00723_022_01470_2 crossref_primary_10_3390_ma13122826 crossref_primary_10_1051_0004_6361_202244739 crossref_primary_10_1098_rsta_2024_0331 crossref_primary_10_1007_s11600_024_01334_2 |
| Cites_doi | 10.2307/2372313 10.1137/1.9780898719697 10.1093/biomet/41.3-4.434 10.1103/RevModPhys.65.413 10.1023/A:1021941328858 10.1007/978-0-387-92920-0_21 10.1073/pnas.67.1.282 10.1088/0266-5611/22/1/010 10.1088/0266-5611/15/3/306 10.1088/0266-5611/28/5/055015 10.1198/106186005X76983 10.1073/pnas.65.2.281 10.1109/PROC.1986.13460 10.1093/biomet/57.1.97 10.1016/j.apnum.2016.01.005 10.1137/S0036144598333613 10.1088/0266-5611/30/11/114007 10.1111/j.2517-6161.1992.tb01864.x 10.1198/004017007000000092 10.1088/0266-5611/21/4/014 10.1017/S0962492910000061 10.1137/110845598 10.1088/0266-5611/24/3/034013 10.1016/0167-2789(92)90242-F 10.1088/0266-5611/15/2/022 10.1093/gji/ggx199 10.1111/j.1365-246X.1975.tb06461.x 10.3934/ipi.2014.8.561 10.1201/b10905 10.2307/1971291 10.1088/1361-6420/aaa34d 10.1111/1467-9868.00294 10.1007/s002110100339 10.1137/1.9781611971200 10.1007/978-3-662-02835-3 10.1088/0266-5611/31/1/015001 10.1109/TIT.2006.871582 10.1007/978-3-319-11259-6_23-1 10.1109/TMI.1982.4307558 10.1088/0266-5611/28/2/025005 10.1016/S0074-6142(02)80219-4 10.1073/pnas.65.1.1 10.1111/j.1365-246X.1972.tb06115.x 10.1016/0022-247X(70)90017-X 10.1016/j.jcp.2015.10.008 10.2307/2308707 10.2307/2118653 10.1088/0266-5611/25/12/123006 10.1137/080723995 10.1007/BF01937276 10.1080/01621459.1949.10483310 10.1137/1.9781611972344 10.1201/b14835 10.3934/ipi.2011.5.167 10.1175/1520-0469(1968)025<0750:SICORM>2.0.CO;2 10.1007/s002110050158 10.1137/140964023 10.1109/TPAMI.1984.4767596 10.1088/0266-5611/5/4/011 10.1007/BF00533743 10.1086/111605 10.1364/JOSA.62.000055 10.1214/13-STS421 10.1088/0266-5611/31/12/125005 10.1016/j.cam.2005.09.027 10.1109/TIT.2005.862083 10.1088/0266-5611/13/2/020 10.1088/0266-5611/30/11/114015 |
| ContentType | Journal Article |
| Copyright | 2018 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: 2018 Wiley Periodicals, Inc. |
| DBID | AAYXX CITATION 7QH 7UA C1K F1W H96 H97 JQ2 L.G |
| DOI | 10.1002/wics.1427 |
| DatabaseName | CrossRef Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ProQuest Computer Science Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Computer Science Collection Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Statistics |
| EISSN | 1939-0068 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_wics_1427 WICS1427 |
| Genre | reviewArticle |
| GroupedDBID | 05W 0R~ 1OC 1VH 33P 4.4 53G 5DZ 8-1 AAESR AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADZMN AEIGN AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AGQPQ AGYGG AHBTC AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG AUFTA AVWKF AZBYB AZFZN AZVAB BDRZF BHBCM BMNLL BRXPI DCZOG DRFUL DRSTM EBS EJD F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ O66 O9- P2W RNS ROL SUPJJ WBKPD WIH WIK WOHZO WXSBR WYISQ XBAML XV2 ZZTAW AAYXX CITATION 7QH 7UA C1K F1W H96 H97 JQ2 L.G |
| ID | FETCH-LOGICAL-c2977-c04d8623f28addb569293fb05806fcf028f63e110e321b0d015d42c96be512f93 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 108 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430132400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-5108 |
| IngestDate | Sun Nov 09 07:48:57 EST 2025 Sat Nov 29 03:49:26 EST 2025 Tue Nov 18 20:40:25 EST 2025 Sun Sep 21 06:21:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2977-c04d8623f28addb569293fb05806fcf028f63e110e321b0d015d42c96be512f93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2025129903 |
| PQPubID | 2034593 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2025129903 crossref_primary_10_1002_wics_1427 crossref_citationtrail_10_1002_wics_1427 wiley_primary_10_1002_wics_1427_WICS1427 |
| PublicationCentury | 2000 |
| PublicationDate | May/June 2018 2018-05-00 20180501 |
| PublicationDateYYYYMMDD | 2018-05-01 |
| PublicationDate_xml | – month: 05 year: 2018 text: May/June 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
| PublicationTitle | Wiley interdisciplinary reviews. Computational statistics |
| PublicationYear | 2018 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | Calvetti D. (e_1_2_23_1_20_1) 2007 e_1_2_23_1_50_1 e_1_2_23_1_75_1 e_1_2_23_1_31_1 e_1_2_23_1_52_1 e_1_2_23_1_73_1 e_1_2_23_1_14_1 e_1_2_23_1_37_1 Kaipio J. (e_1_2_23_1_51_1) 2004 Liu J. S. (e_1_2_23_1_61_1) 2001 e_1_2_23_1_58_1 e_1_2_23_1_16_1 Golub G. H. (e_1_2_23_1_39_1) 2012 e_1_2_23_1_10_1 e_1_2_23_1_33_1 e_1_2_23_1_54_1 e_1_2_23_1_35_1 e_1_2_23_1_56_1 Newton R. G. (e_1_2_23_1_71_1) 2013 e_1_2_23_1_77_1 e_1_2_23_1_4_1 e_1_2_23_1_64_1 e_1_2_23_1_85_1 e_1_2_23_1_2_1 e_1_2_23_1_41_1 e_1_2_23_1_62_1 e_1_2_23_1_83_1 Tarantola A. (e_1_2_23_1_79_1) 1987 e_1_2_23_1_60_1 e_1_2_23_1_26_1 e_1_2_23_1_47_1 e_1_2_23_1_28_1 e_1_2_23_1_49_1 e_1_2_23_1_22_1 e_1_2_23_1_43_1 e_1_2_23_1_68_1 e_1_2_23_1_45_1 Chadan K. (e_1_2_23_1_24_1) 2012 e_1_2_23_1_8_1 e_1_2_23_1_6_1 e_1_2_23_1_74_1 e_1_2_23_1_30_1 e_1_2_23_1_53_1 e_1_2_23_1_72_1 e_1_2_23_1_70_1 Tikhonov A. N. (e_1_2_23_1_82_1) 1977 e_1_2_23_1_15_1 e_1_2_23_1_36_1 Matérn B. (e_1_2_23_1_66_1) 1960; 49 e_1_2_23_1_17_1 e_1_2_23_1_38_1 e_1_2_23_1_55_1 e_1_2_23_1_78_1 e_1_2_23_1_11_1 e_1_2_23_1_32_1 e_1_2_23_1_57_1 e_1_2_23_1_76_1 e_1_2_23_1_13_1 e_1_2_23_1_34_1 Calderón A. P. (e_1_2_23_1_12_1) 1980 e_1_2_23_1_19_1 Tarantola A. (e_1_2_23_1_80_1) 1982; 50 Laplace P.‐S. (e_1_2_23_1_59_1) 1986; 1 e_1_2_23_1_63_1 e_1_2_23_1_3_1 e_1_2_23_1_42_1 e_1_2_23_1_84_1 Tikhonov A. N. (e_1_2_23_1_81_1) 1963; 4 e_1_2_23_1_25_1 e_1_2_23_1_48_1 e_1_2_23_1_27_1 e_1_2_23_1_69_1 Calvetti D. (e_1_2_23_1_18_1) e_1_2_23_1_21_1 e_1_2_23_1_44_1 e_1_2_23_1_67_1 e_1_2_23_1_23_1 e_1_2_23_1_46_1 e_1_2_23_1_65_1 Groetsch C. W. (e_1_2_23_1_40_1) 1984 e_1_2_23_1_29_1 e_1_2_23_1_9_1 e_1_2_23_1_7_1 e_1_2_23_1_5_1 |
| References_xml | – ident: e_1_2_23_1_58_1 doi: 10.2307/2372313 – ident: e_1_2_23_1_47_1 doi: 10.1137/1.9780898719697 – ident: e_1_2_23_1_85_1 doi: 10.1093/biomet/41.3-4.434 – volume-title: Inverse problems in quantum scattering theory year: 2012 ident: e_1_2_23_1_24_1 – start-page: 65 volume-title: Seminar on numerical analysis and its applications to continuum physics, Rio de Janeiro year: 1980 ident: e_1_2_23_1_12_1 – ident: e_1_2_23_1_43_1 doi: 10.1103/RevModPhys.65.413 – ident: e_1_2_23_1_44_1 doi: 10.1023/A:1021941328858 – ident: e_1_2_23_1_22_1 doi: 10.1007/978-0-387-92920-0_21 – ident: e_1_2_23_1_6_1 doi: 10.1073/pnas.67.1.282 – ident: e_1_2_23_1_3_1 doi: 10.1088/0266-5611/22/1/010 – ident: e_1_2_23_1_53_1 doi: 10.1088/0266-5611/15/3/306 – ident: e_1_2_23_1_16_1 doi: 10.1088/0266-5611/28/5/055015 – volume: 1 start-page: 359 year: 1986 ident: e_1_2_23_1_59_1 article-title: Mémoire sur la probabilité des causes par les évènemens. English translation in Stigler SM, Laplace's 1774 Memoir on Inverse Probability publication-title: Statistical Science – volume-title: Scattering theory of waves and particles year: 2013 ident: e_1_2_23_1_71_1 – ident: e_1_2_23_1_26_1 doi: 10.1198/106186005X76983 – ident: e_1_2_23_1_5_1 doi: 10.1073/pnas.65.2.281 – ident: e_1_2_23_1_42_1 doi: 10.1109/PROC.1986.13460 – volume-title: Inverse problem theory year: 1987 ident: e_1_2_23_1_79_1 – ident: e_1_2_23_1_48_1 doi: 10.1093/biomet/57.1.97 – ident: e_1_2_23_1_56_1 doi: 10.1016/j.apnum.2016.01.005 – ident: e_1_2_23_1_25_1 doi: 10.1137/S0036144598333613 – ident: e_1_2_23_1_11_1 doi: 10.1088/0266-5611/30/11/114007 – ident: e_1_2_23_1_34_1 doi: 10.1111/j.2517-6161.1992.tb01864.x – ident: e_1_2_23_1_8_1 doi: 10.1198/004017007000000092 – ident: e_1_2_23_1_19_1 doi: 10.1088/0266-5611/21/4/014 – ident: e_1_2_23_1_77_1 doi: 10.1017/S0962492910000061 – ident: e_1_2_23_1_64_1 doi: 10.1137/110845598 – volume: 50 start-page: 159 year: 1982 ident: e_1_2_23_1_80_1 article-title: Inverse problems = quest for information publication-title: Journal of Geophysics – ident: e_1_2_23_1_21_1 doi: 10.1088/0266-5611/24/3/034013 – ident: e_1_2_23_1_75_1 doi: 10.1016/0167-2789(92)90242-F – ident: e_1_2_23_1_2_1 doi: 10.1088/0266-5611/15/2/022 – ident: e_1_2_23_1_41_1 doi: 10.1093/gji/ggx199 – ident: e_1_2_23_1_50_1 doi: 10.1111/j.1365-246X.1975.tb06461.x – ident: e_1_2_23_1_73_1 doi: 10.3934/ipi.2014.8.561 – ident: e_1_2_23_1_10_1 doi: 10.1201/b10905 – ident: e_1_2_23_1_78_1 doi: 10.2307/1971291 – ident: e_1_2_23_1_13_1 doi: 10.1088/1361-6420/aaa34d – ident: e_1_2_23_1_54_1 doi: 10.1111/1467-9868.00294 – ident: e_1_2_23_1_15_1 doi: 10.1007/s002110100339 – ident: e_1_2_23_1_32_1 doi: 10.1137/1.9781611971200 – volume-title: Monte Carlo strategies in scientific computing year: 2001 ident: e_1_2_23_1_61_1 – ident: e_1_2_23_1_27_1 doi: 10.1007/978-3-662-02835-3 – ident: e_1_2_23_1_35_1 doi: 10.1088/0266-5611/31/1/015001 – volume-title: Statistical and computational inverse problems year: 2004 ident: e_1_2_23_1_51_1 – ident: e_1_2_23_1_33_1 doi: 10.1109/TIT.2006.871582 – ident: e_1_2_23_1_65_1 doi: 10.1007/978-3-319-11259-6_23-1 – ident: e_1_2_23_1_76_1 doi: 10.1109/TMI.1982.4307558 – ident: e_1_2_23_1_55_1 doi: 10.1088/0266-5611/28/2/025005 – ident: e_1_2_23_1_68_1 doi: 10.1016/S0074-6142(02)80219-4 – ident: e_1_2_23_1_4_1 doi: 10.1073/pnas.65.1.1 – ident: e_1_2_23_1_49_1 doi: 10.1111/j.1365-246X.1972.tb06115.x – ident: e_1_2_23_1_36_1 doi: 10.1016/0022-247X(70)90017-X – volume: 49 start-page: 1 issue: 5 year: 1960 ident: e_1_2_23_1_66_1 article-title: Spatial variation publication-title: Meddelanden från statens skogsforsknigsinstitut – ident: e_1_2_23_1_29_1 doi: 10.1016/j.jcp.2015.10.008 – ident: e_1_2_23_1_57_1 doi: 10.2307/2308707 – ident: e_1_2_23_1_70_1 doi: 10.2307/2118653 – ident: e_1_2_23_1_9_1 doi: 10.1088/0266-5611/25/12/123006 – ident: e_1_2_23_1_14_1 doi: 10.1137/080723995 – ident: e_1_2_23_1_46_1 doi: 10.1007/BF01937276 – ident: e_1_2_23_1_67_1 doi: 10.1080/01621459.1949.10483310 – ident: e_1_2_23_1_69_1 doi: 10.1137/1.9781611972344 – ident: e_1_2_23_1_38_1 doi: 10.1201/b14835 – ident: e_1_2_23_1_74_1 doi: 10.3934/ipi.2011.5.167 – ident: e_1_2_23_1_84_1 doi: 10.1175/1520-0469(1968)025<0750:SICORM>2.0.CO;2 – ident: e_1_2_23_1_45_1 doi: 10.1007/s002110050158 – ident: e_1_2_23_1_18_1 article-title: Bayes meets Krylov: Statistically inspired preconditioners for CGLS publication-title: SIAM Review – ident: e_1_2_23_1_7_1 doi: 10.1137/140964023 – ident: e_1_2_23_1_37_1 doi: 10.1109/TPAMI.1984.4767596 – ident: e_1_2_23_1_60_1 doi: 10.1088/0266-5611/5/4/011 – volume: 4 start-page: 1624 year: 1963 ident: e_1_2_23_1_81_1 article-title: Regularization of incorrectly posed problems publication-title: Soviet Mathematics Doklady – ident: e_1_2_23_1_63_1 doi: 10.1007/BF00533743 – ident: e_1_2_23_1_62_1 doi: 10.1086/111605 – ident: e_1_2_23_1_72_1 doi: 10.1364/JOSA.62.000055 – ident: e_1_2_23_1_31_1 – volume-title: Matrix computations year: 2012 ident: e_1_2_23_1_39_1 – ident: e_1_2_23_1_28_1 doi: 10.1214/13-STS421 – volume-title: The theory of Tikhonov regularization for Fredholm equations year: 1984 ident: e_1_2_23_1_40_1 – ident: e_1_2_23_1_17_1 doi: 10.1088/0266-5611/31/12/125005 – ident: e_1_2_23_1_52_1 doi: 10.1016/j.cam.2005.09.027 – volume-title: Solutions of ill‐posed problems year: 1977 ident: e_1_2_23_1_82_1 – ident: e_1_2_23_1_23_1 doi: 10.1109/TIT.2005.862083 – ident: e_1_2_23_1_83_1 doi: 10.1088/0266-5611/13/2/020 – ident: e_1_2_23_1_30_1 doi: 10.1088/0266-5611/30/11/114015 – volume-title: Introduction to Bayesian scientific computing – Ten lectures on subjective computing year: 2007 ident: e_1_2_23_1_20_1 |
| SSID | ssj0067676 |
| Score | 2.4998407 |
| Snippet | Inverse problems deal with the quest for unknown causes of observed consequences, based on predictive models, known as the forward models, that associate the... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e1427 |
| SubjectTerms | Bayesian analysis Computation Computational mathematics Computer applications Data Data analysis Data processing Frameworks Graphical methods hierarchical Bayesian models Ill‐posedness Inverse problems likelihood Mathematical models Mathematics measurement and modeling errors Modelling Noise measurement Noise sensitivity Numerical methods posterior estimates Prediction models Probability theory Random variables Regularization sparsity‐promoting and sample‐based priors Statistical analysis Statistical inference Statistical methods Statistics structural Tikhonov regularization |
| Title | Inverse problems: From regularization to Bayesian inference |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwics.1427 https://www.proquest.com/docview/2025129903 |
| Volume | 10 |
| WOSCitedRecordID | wos000430132400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1939-0068 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067676 issn: 1939-5108 databaseCode: DRFUL dateStart: 20090101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5q60EPvsVqlUU8eFma7uaxsSetBoVaRK32FrKbXShoK0lV_Pfu5lUFBcFbDpNkmczjm83ONwBHVuQwZUUUc9URWOdjgn3iMiyZJEw4RLnZKd-HvjcYsNHIv6lBt-yFyfkhqg034xlZvDYOHvG0PScNfR-LVPs58RagQbTd2nVonN8Gw34ZiA0VmZv_VPaxNj1WEgtZpF3d_D0dzTHmV6SapZpg9V-LXIOVAmGi09wk1qEmJxuwfF3Rs6ab0DXsGkkqUTFOJj1BQTJ9Rkk2mD4pWjPRbIrOog9p2izRuGwM3IJhcHHfu8TFFAUsiAZ3WFh2rMsWqgjTsYw7rgZEVHHLYZarhNL4QrlUahQgKelwK9b4ILaJ8F0uNRhQPt2G-mQ6kTuADJgQVBc9nohtHSW5JHZMPTtidsQ1LmvCcanMUBQU42bSxVOYkyOT0OgjNPpowmEl-pLzavwk1Cq_SFi4VhoSUxWZJGpel-n-9weEj1e9O3Ox-3fRPVjSoIjlhxpbUJ8lr3IfFsXbbJwmB4WNfQL_utR7 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qK6gH32K16iIevCxNN6-NetFqaDEtoq32FpLNLhS0laQq_nt381JBQfCWw-TBZB7f7O58A3CkBSYVWqDjULQYlvmYYIdYFHPKCWUmEVZ6yvfes_t9Oho5NxU4K3phMn6IcsFNeUYar5WDqwXp5idr6NuYJdLRiT0HNUOakVmF2uWtO_SKSKy4yKxsV9nB0vZowSykkWZ58_d89Akyv0LVNNe4K__7ylVYzjEmOs-MYg0qfLIOS72SoDXZgFPFrxEnHOUDZZIT5MbTJxSno-njvDkTzaboInjnqtESjYvWwE0YuleDdgfncxQwIxLeYaYZkSxcdEGojGahaUlIpItQM6lmCSYkwhCWziUO4DpphVokEUJkEOZYIZdwQDj6FlQn0wnfBqTgBNNl2WOzyJBxMuTEiHTbCKgRhBKZ1eG40KbPcpJxNevi0c_okYmv9OErfdThsBR9zpg1fhJqFL_Ez50r8Ymqi1QaVa9Llf_7A_yHbvtOXez8XfQAFjqDnud73f71LixKiESzI44NqM7iF74H8-x1Nk7i_dzgPgDBpthr |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fS8MwEMePuYnog7_F6dQiPvgS1iVtmqovOi0O5xjqdG-lTRMY6Dbaqfjfm_THpqAg-NaH9AfX3N0nbe57AEdmYDNpBgSFssGRyscYuZgyJJjAjNtY0nSX72Pb6XRYv-92S3BW1MJk-hDTD27aM9J4rR1cjCNZn6mGvg94ohwdO3NQsWyXKresXN55vXYRibUWGc3-KrtIzT1WKAuZuD49-Xs-mkHmV1RNc4238r-nXIXlnDGN82xSrEFJDNdh6XYq0JpswKnW14gTYeQNZZITw4tHL0actqaP8-JMYzIyLoIPoQstjUFRGrgJPe_qoXmN8j4KiGOFd4ibVqQWLkRipqJZaFOFRESGps1MKrlUhCEpEYoDBMGN0IwUIUQW5i4NhcIB6ZItKA9HQ7ENhsYJTtSyx-GRpeJkKLAVEccKmBWEisyqcFxY0-e5yLjudfHsZ_LI2Nf28LU9qnA4HTrOlDV-GlQrXomfO1fiY70u0mlU3y41_u8X8J9azXt9sPP3oQew0L30_Harc7MLi4qQWLbDsQblSfwq9mCev00GSbyfz7dPhvDX5g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverse+problems%3A+From+regularization+to+Bayesian+inference&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+statistics&rft.au=Calvetti%2C+D.&rft.au=Somersalo%2C+E.&rft.date=2018-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1939-5108&rft.eissn=1939-0068&rft.volume=10&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fwics.1427&rft.externalDBID=10.1002%252Fwics.1427&rft.externalDocID=WICS1427 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-5108&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-5108&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-5108&client=summon |