Inverse problems: From regularization to Bayesian inference

Inverse problems deal with the quest for unknown causes of observed consequences, based on predictive models, known as the forward models, that associate the former quantities to the latter in the causal order. Forward models are usually well‐posed, as causes determine consequences in a unique and s...

Full description

Saved in:
Bibliographic Details
Published in:Wiley interdisciplinary reviews. Computational statistics Vol. 10; no. 3; pp. e1427 - n/a
Main Authors: Calvetti, D., Somersalo, E.
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01.05.2018
Wiley Subscription Services, Inc
Subjects:
ISSN:1939-5108, 1939-0068
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Inverse problems deal with the quest for unknown causes of observed consequences, based on predictive models, known as the forward models, that associate the former quantities to the latter in the causal order. Forward models are usually well‐posed, as causes determine consequences in a unique and stable way. Inverse problems, on the other hand, are usually ill‐posed: the data may be insufficient to identify the cause unambiguously, an exact solution may not exist, and, like in a mystery story, discovering the cause without extra information tends to be highly sensitive to measurement noise and modeling errors. The Bayesian methodology provides a versatile and natural way of incorporating extra information to supplement the noisy data by modeling the unknown as a random variable to highlight the uncertainty about its value. Presenting the solution in the form of a posterior distribution provides a wide range of possibilities to compute useful estimates. Inverse problems are traditionally approached from the point of view of regularization, a process whereby the ill‐posed problem is replaced by a nearby well‐posed one. While many of the regularization techniques can be reinterpreted in the Bayesian framework through prior design, the Bayesian formalism provides new techniques to enrich the paradigm of traditional inverse problems. In particular, inaccuracies and inadequacies of the forward model are naturally handled in the statistical framework. Similarly, qualitative information about the solution may be reformulated in the form of priors with unknown parameters that can be successfully handled in the hierarchical Bayesian context. This article is categorized under: Statistical and Graphical Methods of Data Analysis > Bayesian Methods and Theory Algorithms and Computational Methods > Numerical Methods Applications of Computational Statistics > Computational Mathematics In inverse problems, the ill‐posedness manifests itself in the form of a likelihood density whose support is wide in some directions, or more generally, along some manifolds, where no clear preference to parameter values is given. An informative prior efficiently restricts the support of the posterior density where the likelihood is non‐informative.
AbstractList Inverse problems deal with the quest for unknown causes of observed consequences, based on predictive models, known as the forward models, that associate the former quantities to the latter in the causal order. Forward models are usually well‐posed, as causes determine consequences in a unique and stable way. Inverse problems, on the other hand, are usually ill‐posed: the data may be insufficient to identify the cause unambiguously, an exact solution may not exist, and, like in a mystery story, discovering the cause without extra information tends to be highly sensitive to measurement noise and modeling errors. The Bayesian methodology provides a versatile and natural way of incorporating extra information to supplement the noisy data by modeling the unknown as a random variable to highlight the uncertainty about its value. Presenting the solution in the form of a posterior distribution provides a wide range of possibilities to compute useful estimates. Inverse problems are traditionally approached from the point of view of regularization, a process whereby the ill‐posed problem is replaced by a nearby well‐posed one. While many of the regularization techniques can be reinterpreted in the Bayesian framework through prior design, the Bayesian formalism provides new techniques to enrich the paradigm of traditional inverse problems. In particular, inaccuracies and inadequacies of the forward model are naturally handled in the statistical framework. Similarly, qualitative information about the solution may be reformulated in the form of priors with unknown parameters that can be successfully handled in the hierarchical Bayesian context. This article is categorized under: Statistical and Graphical Methods of Data Analysis > Bayesian Methods and Theory Algorithms and Computational Methods > Numerical Methods Applications of Computational Statistics > Computational Mathematics In inverse problems, the ill‐posedness manifests itself in the form of a likelihood density whose support is wide in some directions, or more generally, along some manifolds, where no clear preference to parameter values is given. An informative prior efficiently restricts the support of the posterior density where the likelihood is non‐informative.
Inverse problems deal with the quest for unknown causes of observed consequences, based on predictive models, known as the forward models, that associate the former quantities to the latter in the causal order. Forward models are usually well‐posed, as causes determine consequences in a unique and stable way. Inverse problems, on the other hand, are usually ill‐posed: the data may be insufficient to identify the cause unambiguously, an exact solution may not exist, and, like in a mystery story, discovering the cause without extra information tends to be highly sensitive to measurement noise and modeling errors. The Bayesian methodology provides a versatile and natural way of incorporating extra information to supplement the noisy data by modeling the unknown as a random variable to highlight the uncertainty about its value. Presenting the solution in the form of a posterior distribution provides a wide range of possibilities to compute useful estimates. Inverse problems are traditionally approached from the point of view of regularization, a process whereby the ill‐posed problem is replaced by a nearby well‐posed one. While many of the regularization techniques can be reinterpreted in the Bayesian framework through prior design, the Bayesian formalism provides new techniques to enrich the paradigm of traditional inverse problems. In particular, inaccuracies and inadequacies of the forward model are naturally handled in the statistical framework. Similarly, qualitative information about the solution may be reformulated in the form of priors with unknown parameters that can be successfully handled in the hierarchical Bayesian context. This article is categorized under: Statistical and Graphical Methods of Data Analysis > Bayesian Methods and Theory Algorithms and Computational Methods > Numerical Methods Applications of Computational Statistics > Computational Mathematics
Inverse problems deal with the quest for unknown causes of observed consequences, based on predictive models, known as the forward models, that associate the former quantities to the latter in the causal order. Forward models are usually well‐posed, as causes determine consequences in a unique and stable way. Inverse problems, on the other hand, are usually ill‐posed: the data may be insufficient to identify the cause unambiguously, an exact solution may not exist, and, like in a mystery story, discovering the cause without extra information tends to be highly sensitive to measurement noise and modeling errors. The Bayesian methodology provides a versatile and natural way of incorporating extra information to supplement the noisy data by modeling the unknown as a random variable to highlight the uncertainty about its value. Presenting the solution in the form of a posterior distribution provides a wide range of possibilities to compute useful estimates. Inverse problems are traditionally approached from the point of view of regularization, a process whereby the ill‐posed problem is replaced by a nearby well‐posed one. While many of the regularization techniques can be reinterpreted in the Bayesian framework through prior design, the Bayesian formalism provides new techniques to enrich the paradigm of traditional inverse problems. In particular, inaccuracies and inadequacies of the forward model are naturally handled in the statistical framework. Similarly, qualitative information about the solution may be reformulated in the form of priors with unknown parameters that can be successfully handled in the hierarchical Bayesian context.This article is categorized under:Statistical and Graphical Methods of Data Analysis > Bayesian Methods and TheoryAlgorithms and Computational Methods > Numerical MethodsApplications of Computational Statistics > Computational Mathematics
Author Somersalo, E.
Calvetti, D.
Author_xml – sequence: 1
  givenname: D.
  surname: Calvetti
  fullname: Calvetti, D.
  organization: Case Western Reserve University
– sequence: 2
  givenname: E.
  surname: Somersalo
  fullname: Somersalo, E.
  email: erkki.somersalo@case.edu
  organization: Case Western Reserve University
BookMark eNp9kE1LAzEQhoNUsK0e_AcLnjxsO8l2P6InXawWCh5UPIZsdiIp26QmW0v99W4_ToIyhxmG552Pd0B61lkk5JLCiAKw8caoMKITlp-QPuUJjwGyonesUwrFGRmEsOi6eRd9cjuzX-gDRivvqgaX4SaaereMPH6sG-nNt2yNs1Hronu5xWCkjYzV6NEqPCenWjYBL455SN6mD6_lUzx_fpyVd_NYMZ7nsYJJXWQs0ayQdV2lGWc80RWkBWRaaWCFzhKkFDBhtIIaaFpPmOJZhSllmidDcnWY2934ucbQioVbe9utFAxYx3AOSUddHyjlXQgetVh5s5R-KyiInTdi543YedOx41-sMu3-09ZL0_yn2JgGt3-PFu-z8mWv-AH1yndq
CitedBy_id crossref_primary_10_1007_s00348_025_04058_1
crossref_primary_10_1007_s11538_023_01165_0
crossref_primary_10_1063_5_0200684
crossref_primary_10_1177_14759217211004232
crossref_primary_10_1088_1361_6501_ad3c5c
crossref_primary_10_1364_AO_541692
crossref_primary_10_1016_j_cma_2023_116690
crossref_primary_10_1016_j_neuroimage_2021_118309
crossref_primary_10_3390_machines11111018
crossref_primary_10_1038_s41598_024_71336_z
crossref_primary_10_1016_j_measurement_2021_110256
crossref_primary_10_1088_1674_4527_ad283b
crossref_primary_10_3390_rs16071187
crossref_primary_10_1016_j_electacta_2021_139010
crossref_primary_10_1016_j_neunet_2025_107740
crossref_primary_10_1137_20M1326246
crossref_primary_10_1093_gji_ggac241
crossref_primary_10_3788_COL202523_083401
crossref_primary_10_1016_j_jpowsour_2023_233845
crossref_primary_10_1002_adpr_202300308
crossref_primary_10_1016_j_oceaneng_2023_115833
crossref_primary_10_1016_j_cherd_2024_01_067
crossref_primary_10_1088_1361_6420_ab958e
crossref_primary_10_1016_j_neuropsychologia_2023_108562
crossref_primary_10_1088_1361_6420_ad91db
crossref_primary_10_1137_24M1643347
crossref_primary_10_1117_1_NPh_12_2_025011
crossref_primary_10_2514_1_J059203
crossref_primary_10_1093_gji_ggaf208
crossref_primary_10_1016_j_bspc_2022_103825
crossref_primary_10_1016_j_jhydrol_2025_134235
crossref_primary_10_1016_j_jsv_2024_118817
crossref_primary_10_1002_nme_7234
crossref_primary_10_1063_5_0149207
crossref_primary_10_1088_1361_6420_ad1348
crossref_primary_10_1016_j_jmsy_2024_12_011
crossref_primary_10_1088_1361_6463_ae0344
crossref_primary_10_1016_j_ijmecsci_2024_109210
crossref_primary_10_1109_TIM_2021_3117361
crossref_primary_10_1115_1_4066118
crossref_primary_10_1063_5_0226735
crossref_primary_10_1016_j_jmaa_2024_128403
crossref_primary_10_1016_j_joule_2024_05_008
crossref_primary_10_1063_5_0189267
crossref_primary_10_1109_RBME_2024_3486439
crossref_primary_10_1002_fld_5135
crossref_primary_10_1063_5_0219447
crossref_primary_10_1016_j_jag_2025_104759
crossref_primary_10_1080_22020586_2019_12072961
crossref_primary_10_3390_met13050997
crossref_primary_10_1002_sam_11679
crossref_primary_10_1016_j_ces_2025_121488
crossref_primary_10_1190_geo2020_0226_1
crossref_primary_10_1155_stc_4714219
crossref_primary_10_1103_PhysRevAccelBeams_25_052401
crossref_primary_10_5194_amt_13_1517_2020
crossref_primary_10_1002_gamm_202000014
crossref_primary_10_1016_j_electacta_2022_140119
crossref_primary_10_1088_1361_6420_aae04f
crossref_primary_10_1162_jocn_a_01822
crossref_primary_10_3389_fphys_2021_653013
crossref_primary_10_1016_j_bspc_2022_103838
crossref_primary_10_1111_nrm_12332
crossref_primary_10_1007_s11565_022_00417_6
crossref_primary_10_1016_j_bpj_2024_11_3310
crossref_primary_10_1080_22020586_2019_12072959
crossref_primary_10_1016_j_cma_2022_115737
crossref_primary_10_1016_j_jvolgeores_2022_107470
crossref_primary_10_3934_ammc_2023005
crossref_primary_10_1016_j_cma_2023_116682
crossref_primary_10_1016_j_cma_2024_117359
crossref_primary_10_1137_21M1441420
crossref_primary_10_1016_j_cma_2025_118064
crossref_primary_10_1088_1361_6420_acd414
crossref_primary_10_1063_5_0154773
crossref_primary_10_1002_nme_70113
crossref_primary_10_1016_j_jocs_2024_102437
crossref_primary_10_1007_s00723_022_01470_2
crossref_primary_10_3390_ma13122826
crossref_primary_10_1051_0004_6361_202244739
crossref_primary_10_1098_rsta_2024_0331
crossref_primary_10_1007_s11600_024_01334_2
Cites_doi 10.2307/2372313
10.1137/1.9780898719697
10.1093/biomet/41.3-4.434
10.1103/RevModPhys.65.413
10.1023/A:1021941328858
10.1007/978-0-387-92920-0_21
10.1073/pnas.67.1.282
10.1088/0266-5611/22/1/010
10.1088/0266-5611/15/3/306
10.1088/0266-5611/28/5/055015
10.1198/106186005X76983
10.1073/pnas.65.2.281
10.1109/PROC.1986.13460
10.1093/biomet/57.1.97
10.1016/j.apnum.2016.01.005
10.1137/S0036144598333613
10.1088/0266-5611/30/11/114007
10.1111/j.2517-6161.1992.tb01864.x
10.1198/004017007000000092
10.1088/0266-5611/21/4/014
10.1017/S0962492910000061
10.1137/110845598
10.1088/0266-5611/24/3/034013
10.1016/0167-2789(92)90242-F
10.1088/0266-5611/15/2/022
10.1093/gji/ggx199
10.1111/j.1365-246X.1975.tb06461.x
10.3934/ipi.2014.8.561
10.1201/b10905
10.2307/1971291
10.1088/1361-6420/aaa34d
10.1111/1467-9868.00294
10.1007/s002110100339
10.1137/1.9781611971200
10.1007/978-3-662-02835-3
10.1088/0266-5611/31/1/015001
10.1109/TIT.2006.871582
10.1007/978-3-319-11259-6_23-1
10.1109/TMI.1982.4307558
10.1088/0266-5611/28/2/025005
10.1016/S0074-6142(02)80219-4
10.1073/pnas.65.1.1
10.1111/j.1365-246X.1972.tb06115.x
10.1016/0022-247X(70)90017-X
10.1016/j.jcp.2015.10.008
10.2307/2308707
10.2307/2118653
10.1088/0266-5611/25/12/123006
10.1137/080723995
10.1007/BF01937276
10.1080/01621459.1949.10483310
10.1137/1.9781611972344
10.1201/b14835
10.3934/ipi.2011.5.167
10.1175/1520-0469(1968)025<0750:SICORM>2.0.CO;2
10.1007/s002110050158
10.1137/140964023
10.1109/TPAMI.1984.4767596
10.1088/0266-5611/5/4/011
10.1007/BF00533743
10.1086/111605
10.1364/JOSA.62.000055
10.1214/13-STS421
10.1088/0266-5611/31/12/125005
10.1016/j.cam.2005.09.027
10.1109/TIT.2005.862083
10.1088/0266-5611/13/2/020
10.1088/0266-5611/30/11/114015
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
7QH
7UA
C1K
F1W
H96
H97
JQ2
L.G
DOI 10.1002/wics.1427
DatabaseName CrossRef
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ProQuest Computer Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Computer Science Collection
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EISSN 1939-0068
EndPage n/a
ExternalDocumentID 10_1002_wics_1427
WICS1427
Genre reviewArticle
GroupedDBID 05W
0R~
1OC
1VH
33P
4.4
53G
5DZ
8-1
AAESR
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADZMN
AEIGN
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BDRZF
BHBCM
BMNLL
BRXPI
DCZOG
DRFUL
DRSTM
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O66
O9-
P2W
RNS
ROL
SUPJJ
WBKPD
WIH
WIK
WOHZO
WXSBR
WYISQ
XBAML
XV2
ZZTAW
AAYXX
CITATION
7QH
7UA
C1K
F1W
H96
H97
JQ2
L.G
ID FETCH-LOGICAL-c2977-c04d8623f28addb569293fb05806fcf028f63e110e321b0d015d42c96be512f93
IEDL.DBID DRFUL
ISICitedReferencesCount 108
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430132400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-5108
IngestDate Sun Nov 09 07:48:57 EST 2025
Sat Nov 29 03:49:26 EST 2025
Tue Nov 18 20:40:25 EST 2025
Sun Sep 21 06:21:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2977-c04d8623f28addb569293fb05806fcf028f63e110e321b0d015d42c96be512f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2025129903
PQPubID 2034593
PageCount 19
ParticipantIDs proquest_journals_2025129903
crossref_primary_10_1002_wics_1427
crossref_citationtrail_10_1002_wics_1427
wiley_primary_10_1002_wics_1427_WICS1427
PublicationCentury 2000
PublicationDate May/June 2018
2018-05-00
20180501
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May/June 2018
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Wiley interdisciplinary reviews. Computational statistics
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References Calvetti D. (e_1_2_23_1_20_1) 2007
e_1_2_23_1_50_1
e_1_2_23_1_75_1
e_1_2_23_1_31_1
e_1_2_23_1_52_1
e_1_2_23_1_73_1
e_1_2_23_1_14_1
e_1_2_23_1_37_1
Kaipio J. (e_1_2_23_1_51_1) 2004
Liu J. S. (e_1_2_23_1_61_1) 2001
e_1_2_23_1_58_1
e_1_2_23_1_16_1
Golub G. H. (e_1_2_23_1_39_1) 2012
e_1_2_23_1_10_1
e_1_2_23_1_33_1
e_1_2_23_1_54_1
e_1_2_23_1_35_1
e_1_2_23_1_56_1
Newton R. G. (e_1_2_23_1_71_1) 2013
e_1_2_23_1_77_1
e_1_2_23_1_4_1
e_1_2_23_1_64_1
e_1_2_23_1_85_1
e_1_2_23_1_2_1
e_1_2_23_1_41_1
e_1_2_23_1_62_1
e_1_2_23_1_83_1
Tarantola A. (e_1_2_23_1_79_1) 1987
e_1_2_23_1_60_1
e_1_2_23_1_26_1
e_1_2_23_1_47_1
e_1_2_23_1_28_1
e_1_2_23_1_49_1
e_1_2_23_1_22_1
e_1_2_23_1_43_1
e_1_2_23_1_68_1
e_1_2_23_1_45_1
Chadan K. (e_1_2_23_1_24_1) 2012
e_1_2_23_1_8_1
e_1_2_23_1_6_1
e_1_2_23_1_74_1
e_1_2_23_1_30_1
e_1_2_23_1_53_1
e_1_2_23_1_72_1
e_1_2_23_1_70_1
Tikhonov A. N. (e_1_2_23_1_82_1) 1977
e_1_2_23_1_15_1
e_1_2_23_1_36_1
Matérn B. (e_1_2_23_1_66_1) 1960; 49
e_1_2_23_1_17_1
e_1_2_23_1_38_1
e_1_2_23_1_55_1
e_1_2_23_1_78_1
e_1_2_23_1_11_1
e_1_2_23_1_32_1
e_1_2_23_1_57_1
e_1_2_23_1_76_1
e_1_2_23_1_13_1
e_1_2_23_1_34_1
Calderón A. P. (e_1_2_23_1_12_1) 1980
e_1_2_23_1_19_1
Tarantola A. (e_1_2_23_1_80_1) 1982; 50
Laplace P.‐S. (e_1_2_23_1_59_1) 1986; 1
e_1_2_23_1_63_1
e_1_2_23_1_3_1
e_1_2_23_1_42_1
e_1_2_23_1_84_1
Tikhonov A. N. (e_1_2_23_1_81_1) 1963; 4
e_1_2_23_1_25_1
e_1_2_23_1_48_1
e_1_2_23_1_27_1
e_1_2_23_1_69_1
Calvetti D. (e_1_2_23_1_18_1)
e_1_2_23_1_21_1
e_1_2_23_1_44_1
e_1_2_23_1_67_1
e_1_2_23_1_23_1
e_1_2_23_1_46_1
e_1_2_23_1_65_1
Groetsch C. W. (e_1_2_23_1_40_1) 1984
e_1_2_23_1_29_1
e_1_2_23_1_9_1
e_1_2_23_1_7_1
e_1_2_23_1_5_1
References_xml – ident: e_1_2_23_1_58_1
  doi: 10.2307/2372313
– ident: e_1_2_23_1_47_1
  doi: 10.1137/1.9780898719697
– ident: e_1_2_23_1_85_1
  doi: 10.1093/biomet/41.3-4.434
– volume-title: Inverse problems in quantum scattering theory
  year: 2012
  ident: e_1_2_23_1_24_1
– start-page: 65
  volume-title: Seminar on numerical analysis and its applications to continuum physics, Rio de Janeiro
  year: 1980
  ident: e_1_2_23_1_12_1
– ident: e_1_2_23_1_43_1
  doi: 10.1103/RevModPhys.65.413
– ident: e_1_2_23_1_44_1
  doi: 10.1023/A:1021941328858
– ident: e_1_2_23_1_22_1
  doi: 10.1007/978-0-387-92920-0_21
– ident: e_1_2_23_1_6_1
  doi: 10.1073/pnas.67.1.282
– ident: e_1_2_23_1_3_1
  doi: 10.1088/0266-5611/22/1/010
– ident: e_1_2_23_1_53_1
  doi: 10.1088/0266-5611/15/3/306
– ident: e_1_2_23_1_16_1
  doi: 10.1088/0266-5611/28/5/055015
– volume: 1
  start-page: 359
  year: 1986
  ident: e_1_2_23_1_59_1
  article-title: Mémoire sur la probabilité des causes par les évènemens. English translation in Stigler SM, Laplace's 1774 Memoir on Inverse Probability
  publication-title: Statistical Science
– volume-title: Scattering theory of waves and particles
  year: 2013
  ident: e_1_2_23_1_71_1
– ident: e_1_2_23_1_26_1
  doi: 10.1198/106186005X76983
– ident: e_1_2_23_1_5_1
  doi: 10.1073/pnas.65.2.281
– ident: e_1_2_23_1_42_1
  doi: 10.1109/PROC.1986.13460
– volume-title: Inverse problem theory
  year: 1987
  ident: e_1_2_23_1_79_1
– ident: e_1_2_23_1_48_1
  doi: 10.1093/biomet/57.1.97
– ident: e_1_2_23_1_56_1
  doi: 10.1016/j.apnum.2016.01.005
– ident: e_1_2_23_1_25_1
  doi: 10.1137/S0036144598333613
– ident: e_1_2_23_1_11_1
  doi: 10.1088/0266-5611/30/11/114007
– ident: e_1_2_23_1_34_1
  doi: 10.1111/j.2517-6161.1992.tb01864.x
– ident: e_1_2_23_1_8_1
  doi: 10.1198/004017007000000092
– ident: e_1_2_23_1_19_1
  doi: 10.1088/0266-5611/21/4/014
– ident: e_1_2_23_1_77_1
  doi: 10.1017/S0962492910000061
– ident: e_1_2_23_1_64_1
  doi: 10.1137/110845598
– volume: 50
  start-page: 159
  year: 1982
  ident: e_1_2_23_1_80_1
  article-title: Inverse problems = quest for information
  publication-title: Journal of Geophysics
– ident: e_1_2_23_1_21_1
  doi: 10.1088/0266-5611/24/3/034013
– ident: e_1_2_23_1_75_1
  doi: 10.1016/0167-2789(92)90242-F
– ident: e_1_2_23_1_2_1
  doi: 10.1088/0266-5611/15/2/022
– ident: e_1_2_23_1_41_1
  doi: 10.1093/gji/ggx199
– ident: e_1_2_23_1_50_1
  doi: 10.1111/j.1365-246X.1975.tb06461.x
– ident: e_1_2_23_1_73_1
  doi: 10.3934/ipi.2014.8.561
– ident: e_1_2_23_1_10_1
  doi: 10.1201/b10905
– ident: e_1_2_23_1_78_1
  doi: 10.2307/1971291
– ident: e_1_2_23_1_13_1
  doi: 10.1088/1361-6420/aaa34d
– ident: e_1_2_23_1_54_1
  doi: 10.1111/1467-9868.00294
– ident: e_1_2_23_1_15_1
  doi: 10.1007/s002110100339
– ident: e_1_2_23_1_32_1
  doi: 10.1137/1.9781611971200
– volume-title: Monte Carlo strategies in scientific computing
  year: 2001
  ident: e_1_2_23_1_61_1
– ident: e_1_2_23_1_27_1
  doi: 10.1007/978-3-662-02835-3
– ident: e_1_2_23_1_35_1
  doi: 10.1088/0266-5611/31/1/015001
– volume-title: Statistical and computational inverse problems
  year: 2004
  ident: e_1_2_23_1_51_1
– ident: e_1_2_23_1_33_1
  doi: 10.1109/TIT.2006.871582
– ident: e_1_2_23_1_65_1
  doi: 10.1007/978-3-319-11259-6_23-1
– ident: e_1_2_23_1_76_1
  doi: 10.1109/TMI.1982.4307558
– ident: e_1_2_23_1_55_1
  doi: 10.1088/0266-5611/28/2/025005
– ident: e_1_2_23_1_68_1
  doi: 10.1016/S0074-6142(02)80219-4
– ident: e_1_2_23_1_4_1
  doi: 10.1073/pnas.65.1.1
– ident: e_1_2_23_1_49_1
  doi: 10.1111/j.1365-246X.1972.tb06115.x
– ident: e_1_2_23_1_36_1
  doi: 10.1016/0022-247X(70)90017-X
– volume: 49
  start-page: 1
  issue: 5
  year: 1960
  ident: e_1_2_23_1_66_1
  article-title: Spatial variation
  publication-title: Meddelanden från statens skogsforsknigsinstitut
– ident: e_1_2_23_1_29_1
  doi: 10.1016/j.jcp.2015.10.008
– ident: e_1_2_23_1_57_1
  doi: 10.2307/2308707
– ident: e_1_2_23_1_70_1
  doi: 10.2307/2118653
– ident: e_1_2_23_1_9_1
  doi: 10.1088/0266-5611/25/12/123006
– ident: e_1_2_23_1_14_1
  doi: 10.1137/080723995
– ident: e_1_2_23_1_46_1
  doi: 10.1007/BF01937276
– ident: e_1_2_23_1_67_1
  doi: 10.1080/01621459.1949.10483310
– ident: e_1_2_23_1_69_1
  doi: 10.1137/1.9781611972344
– ident: e_1_2_23_1_38_1
  doi: 10.1201/b14835
– ident: e_1_2_23_1_74_1
  doi: 10.3934/ipi.2011.5.167
– ident: e_1_2_23_1_84_1
  doi: 10.1175/1520-0469(1968)025<0750:SICORM>2.0.CO;2
– ident: e_1_2_23_1_45_1
  doi: 10.1007/s002110050158
– ident: e_1_2_23_1_18_1
  article-title: Bayes meets Krylov: Statistically inspired preconditioners for CGLS
  publication-title: SIAM Review
– ident: e_1_2_23_1_7_1
  doi: 10.1137/140964023
– ident: e_1_2_23_1_37_1
  doi: 10.1109/TPAMI.1984.4767596
– ident: e_1_2_23_1_60_1
  doi: 10.1088/0266-5611/5/4/011
– volume: 4
  start-page: 1624
  year: 1963
  ident: e_1_2_23_1_81_1
  article-title: Regularization of incorrectly posed problems
  publication-title: Soviet Mathematics Doklady
– ident: e_1_2_23_1_63_1
  doi: 10.1007/BF00533743
– ident: e_1_2_23_1_62_1
  doi: 10.1086/111605
– ident: e_1_2_23_1_72_1
  doi: 10.1364/JOSA.62.000055
– ident: e_1_2_23_1_31_1
– volume-title: Matrix computations
  year: 2012
  ident: e_1_2_23_1_39_1
– ident: e_1_2_23_1_28_1
  doi: 10.1214/13-STS421
– volume-title: The theory of Tikhonov regularization for Fredholm equations
  year: 1984
  ident: e_1_2_23_1_40_1
– ident: e_1_2_23_1_17_1
  doi: 10.1088/0266-5611/31/12/125005
– ident: e_1_2_23_1_52_1
  doi: 10.1016/j.cam.2005.09.027
– volume-title: Solutions of ill‐posed problems
  year: 1977
  ident: e_1_2_23_1_82_1
– ident: e_1_2_23_1_23_1
  doi: 10.1109/TIT.2005.862083
– ident: e_1_2_23_1_83_1
  doi: 10.1088/0266-5611/13/2/020
– ident: e_1_2_23_1_30_1
  doi: 10.1088/0266-5611/30/11/114015
– volume-title: Introduction to Bayesian scientific computing – Ten lectures on subjective computing
  year: 2007
  ident: e_1_2_23_1_20_1
SSID ssj0067676
Score 2.4998407
Snippet Inverse problems deal with the quest for unknown causes of observed consequences, based on predictive models, known as the forward models, that associate the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e1427
SubjectTerms Bayesian analysis
Computation
Computational mathematics
Computer applications
Data
Data analysis
Data processing
Frameworks
Graphical methods
hierarchical Bayesian models
Ill‐posedness
Inverse problems
likelihood
Mathematical models
Mathematics
measurement and modeling errors
Modelling
Noise measurement
Noise sensitivity
Numerical methods
posterior estimates
Prediction models
Probability theory
Random variables
Regularization
sparsity‐promoting and sample‐based priors
Statistical analysis
Statistical inference
Statistical methods
Statistics
structural
Tikhonov regularization
Title Inverse problems: From regularization to Bayesian inference
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwics.1427
https://www.proquest.com/docview/2025129903
Volume 10
WOSCitedRecordID wos000430132400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1939-0068
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067676
  issn: 1939-5108
  databaseCode: DRFUL
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5q60EPvsVqlUU8eAlNNukmsSetBoVaRK32FrKbXShoK0lV_PfO5lUFBcFbIJMHs_P4Jtn5BuAIYx4XVO-o0aMDHCq54bsqMjoK8TMmrNjKZh0-9N3BwBuN_JsadMtemJwfovrgpj0ji9fawSOetuekoe9jkaKfU3cBGhTt1qlD4_w2GPbLQKypyFj-U9k30PS8kljIpO3q4u_paI4xvyLVLNUEq_96yTVYKRAmOc1NYh1qcrIBy9cVPWu6CV3NrpGkkhTjZNITEiTTZ5Jkg-mTojWTzKbkLPqQus2SjMvGwC0YBhf3vUujmKJg4Bq4riFMJ8ayxVbUw1jGOwwBka242fFMpoRCfKGYLREFSJta3IwRH8QOFT7jEsGA8u1tqE-mE7kDRFhSMk0JFzPp-IJFWK7FyqIRFwpPxU04LpUZioJiXE-6eApzcmQaan2EWh9NOKxEX3JejZ-EWuWKhIVrpSHVVZFOojY-LtP97zcIH696d_pg9--ie7CEoMjLNzW2oD5LXuU-LIq32ThNDgob-wTxANVa
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qK6gH32K1ahAPXkKTTZqHetFqaDEtoq32tiSbXShoK0lV_PfO5qWCguAtkM2D2Xl8s7vzDcAR-ryQEXmiRrYOMAkPVdcWgdoSiJ8xYEV62uvw3rf7fWc0cm8qcFbUwmT8EOWCm7SM1F9LA5cL0s1P1tC3MUvQ0Ik9BzUT1ahVhdrlrTf0C08sucisbFfZVVH3nIJZSCPN8uHv8egTZH6Fqmms8Vb-95ersJxjTOU8U4o1qPDJOiz1SoLWZANOJb9GnHAlbyiTnChePH1S4rQ1fZwXZyqzqXIRvHNZaKmMi9LATRh6V4N2R837KKg4C7atMs2MMHExBHHQm4UtCyGRIUKt5WiWYAIRhrAMjjiAG0QPtQgRQmQS5lohRzggXGMLqpPphG-DwnTOLUkKF1ncdJkVYMIWCZ0EIRN4K6rDcSFNynKScdnr4pFm9MiESnlQKY86HJZDnzNmjZ8GNYopoblxJZTIvEiGUQM_lwr_9xfQh277Tl7s_H3oASx0Bj2f-t3-9S4sIkRysiOODajO4he-B_PsdTZO4v1c4T4AvGzZSg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qK6IH32K1ahAPXkKTTbJJ1ItWg8VailrtLSSbXShoW5Kq-O-dzasKCoK3QCYPZufxTbLzDcARxryQEbmjRo4OMAkPVdcWgWoJxM-YsCI9nXX42LG7XWcwcHsVOCt6YTJ-iPKDm_SMNF5LB-eTSDRnrKHvQ5agoxN7Dmqm5VJ0y9rlndfvFJFYcpHR7K-yq6LtOQWzkEaa5cXf89EMZH6Fqmmu8Vb-95arsJxjTOU8M4o1qPDROizdlgStyQacSn6NOOFKPlAmOVG8ePyixOlo-jhvzlSmY-Ui-OCy0VIZFq2Bm9D3rh5a12o-R0HFVbBtlWlmhIWLIYiD0Sy0KEIiQ4Sa5WhUMIEIQ1CDIw7gBtFDLUKEEJmEuTTkCAeEa2xBdTQe8W1QmM45laRwEeWmy2iABVskdBKETOCpqA7HhTZ9lpOMy1kXz35Gj0x8qQ9f6qMOh6XoJGPW-EmoUSyJnztX4hNZF8k0auDjUuX_fgP_qd26lwc7fxc9gIXeped32t2bXVhEhORkOxwbUJ3Gr3wP5tnbdJjE-7m9fQKA19jF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverse+problems%3A+From+regularization+to+Bayesian+inference&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+statistics&rft.au=Calvetti%2C+D&rft.au=Somersalo%2C+E&rft.date=2018-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1939-5108&rft.eissn=1939-0068&rft.volume=10&rft.issue=3&rft.spage=e1427&rft_id=info:doi/10.1002%2Fwics.1427&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-5108&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-5108&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-5108&client=summon