A combined probabilistic modeling of renewable generation and system load types to determine allowable DG penetration level in distribution networks

Summary Determining the penetration level of the distributed generation (DG) is an effective tool to site and size DGs in distribution networks. A multiobjective function of optimizing the DG penetration level, subject to constraints including short circuit capacity, voltage limits, transformer capa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International transactions on electrical energy systems Ročník 29; číslo 1; s. e2696 - n/a
Hlavní autoři: Naghdi, Marzieh, Shafiyi, Mohammad‐Agha, Haghifam, Mahmoud‐Reza
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken John Wiley & Sons, Inc 01.01.2019
Témata:
ISSN:2050-7038, 2050-7038
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Summary Determining the penetration level of the distributed generation (DG) is an effective tool to site and size DGs in distribution networks. A multiobjective function of optimizing the DG penetration level, subject to constraints including short circuit capacity, voltage limits, transformer capacity, reverse power flow, and congestion of lines, is introduced to minimize the real and reactive losses and to ensure the voltage stability considering the variations of loads, different locations and power factors of DGs, and statistical nature of DG powers especially renewable energy resources. This optimization is performed based on a combined probabilistic modeling of the chronological behavior of wind speed, solar irradiance, and load with different types. The dynamical behavior of the compensators and on‐load tap changers is modeled by optimization subfunctions. An improved bee algorithm is used through conducting searches in the neighboring areas based on a new nonlinear function for a higher fitness and coherency speed.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2050-7038
2050-7038
DOI:10.1002/etep.2696