A combined probabilistic modeling of renewable generation and system load types to determine allowable DG penetration level in distribution networks

Summary Determining the penetration level of the distributed generation (DG) is an effective tool to site and size DGs in distribution networks. A multiobjective function of optimizing the DG penetration level, subject to constraints including short circuit capacity, voltage limits, transformer capa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International transactions on electrical energy systems Jg. 29; H. 1; S. e2696 - n/a
Hauptverfasser: Naghdi, Marzieh, Shafiyi, Mohammad‐Agha, Haghifam, Mahmoud‐Reza
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken John Wiley & Sons, Inc 01.01.2019
Schlagworte:
ISSN:2050-7038, 2050-7038
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Determining the penetration level of the distributed generation (DG) is an effective tool to site and size DGs in distribution networks. A multiobjective function of optimizing the DG penetration level, subject to constraints including short circuit capacity, voltage limits, transformer capacity, reverse power flow, and congestion of lines, is introduced to minimize the real and reactive losses and to ensure the voltage stability considering the variations of loads, different locations and power factors of DGs, and statistical nature of DG powers especially renewable energy resources. This optimization is performed based on a combined probabilistic modeling of the chronological behavior of wind speed, solar irradiance, and load with different types. The dynamical behavior of the compensators and on‐load tap changers is modeled by optimization subfunctions. An improved bee algorithm is used through conducting searches in the neighboring areas based on a new nonlinear function for a higher fitness and coherency speed.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2050-7038
2050-7038
DOI:10.1002/etep.2696