Glioma grade detection using grasshopper optimization algorithm‐optimized machine learning methods: The Cancer Imaging Archive study
Detection of brain tumor's grade is a very important task in treatment plan design which was done using invasive methods such as pathological examination. This examination needs resection procedure and resulted in pain, hemorrhage and infection. The aim of this study is to provide an automated...
Saved in:
| Published in: | International journal of imaging systems and technology Vol. 31; no. 3; pp. 1670 - 1677 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken, USA
John Wiley & Sons, Inc
01.09.2021
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 0899-9457, 1098-1098 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Detection of brain tumor's grade is a very important task in treatment plan design which was done using invasive methods such as pathological examination. This examination needs resection procedure and resulted in pain, hemorrhage and infection. The aim of this study is to provide an automated non‐invasive method for estimation of brain tumor's grade using Magnetic Resonance Images (MRI). After pre‐processing, using Fuzzy C‐Means (FCM) segmentation method, tumor region was extracted from post‐processed images. In feature extraction, texture, Local Binary Pattern (LBP) and fractal‐based features were extracted using Matlab software. Then using Grasshopper Optimization Algorithm (GOA), parameters of three different classification methods including Random Forest (RF), K‐Nearest Neighbor (KNN) and Support Vector Machine (SVM) were optimized. Finally, performance of three applied classifiers before and after optimization were compared. The results showed that the random forest with accuracy of 99.09% has achieved better performance comparing other classification methods. |
|---|---|
| AbstractList | Detection of brain tumor's grade is a very important task in treatment plan design which was done using invasive methods such as pathological examination. This examination needs resection procedure and resulted in pain, hemorrhage and infection. The aim of this study is to provide an automated non‐invasive method for estimation of brain tumor's grade using Magnetic Resonance Images (MRI). After pre‐processing, using Fuzzy C‐Means (FCM) segmentation method, tumor region was extracted from post‐processed images. In feature extraction, texture, Local Binary Pattern (LBP) and fractal‐based features were extracted using Matlab software. Then using Grasshopper Optimization Algorithm (GOA), parameters of three different classification methods including Random Forest (RF), K‐Nearest Neighbor (KNN) and Support Vector Machine (SVM) were optimized. Finally, performance of three applied classifiers before and after optimization were compared. The results showed that the random forest with accuracy of 99.09% has achieved better performance comparing other classification methods. |
| Author | Hedyehzadeh, Mohammadreza Maghooli, Keivan MomenGharibvand, Mohammad |
| Author_xml | – sequence: 1 givenname: Mohammadreza orcidid: 0000-0002-8545-2529 surname: Hedyehzadeh fullname: Hedyehzadeh, Mohammadreza organization: Islamic Azad University – sequence: 2 givenname: Keivan surname: Maghooli fullname: Maghooli, Keivan email: k_maghooli@srbiau.ac.ir organization: Islamic Azad University – sequence: 3 givenname: Mohammad surname: MomenGharibvand fullname: MomenGharibvand, Mohammad organization: Ahvaz Jundishapur University of Medical Sciences |
| BookMark | eNp1kL1OwzAUhS0EEm1h4A0sMTGkvc5fE7aqglKpiKXMkePcNK6SONgOqExMzDwjT0LSdkKwXEv3fOdY9wzJaa1qJOSKwZgBuBNZ8bHrBl54QgYM4sjpxykZQBTHTuwH03MyNGYLwFgAwYB8LkqpKk43mmdIM7QorFQ1bY2sN_3WmEI1DWqqGisr-c73Mi83SktbVN8fX0cBM1pxUcgaaYlc172_QluozNzSdYF0zmvR5Swrvum1me7gV6TGttnugpzlvDR4eXxH5Pn-bj1_cFZPi-V8tnKEG09Dx80gBNbdknIU-dTDXAiRBj6LRJT5vhfGGTDPFYwLAExZKrif-xFjoZsD94Q3IteH3EarlxaNTbaq1XX3ZeIGQQSeD-B31ORACa2M0ZgnQtr94VZzWSYMkr7spCs72ZfdOW5-ORrdqXr3J3tMf5Ml7v4Hk-Xj7OD4ATeFlIY |
| CitedBy_id | crossref_primary_10_1007_s10143_025_03515_z crossref_primary_10_1007_s11760_024_03626_y crossref_primary_10_1186_s41983_025_00980_7 crossref_primary_10_1007_s11831_024_10128_0 crossref_primary_10_1016_j_suronc_2023_101986 |
| Cites_doi | 10.1186/s13640-019-0436-5 10.1155/2016/3406406 10.1155/2014/298473 10.1007/s40708-017-0075-5 10.1093/neuonc/not151 10.1016/j.advengsoft.2017.01.004 10.1088/0031-9155/60/17/6937 10.1016/j.procs.2014.11.060 10.1007/s00138-002-0087-9 10.1002/mp.14168 10.1007/s00401-007-0243-4 10.1109/EMBC.2015.7318458 10.1007/978-3-030-02628-8_12 10.1109/ICRTIT.2011.5972341 10.1007/s10916-019-1228-2 10.1001/jama.2012.12807 10.1109/PICC.2015.7455799 10.3390/app10061999 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2021 Wiley Periodicals LLC. |
| DBID | AAYXX CITATION |
| DOI | 10.1002/ima.22536 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1098-1098 |
| EndPage | 1677 |
| ExternalDocumentID | 10_1002_ima_22536 IMA22536 |
| Genre | article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HDBZQ HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X |
| ID | FETCH-LOGICAL-c2976-2d0601089baecf73efcccb5418c8d44369d0132c1ac00eb1bca4f481162f0a3c3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000609305700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0899-9457 |
| IngestDate | Fri Jul 25 02:52:59 EDT 2025 Sat Nov 29 02:46:14 EST 2025 Tue Nov 18 21:38:27 EST 2025 Wed Jan 22 16:28:10 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2976-2d0601089baecf73efcccb5418c8d44369d0132c1ac00eb1bca4f481162f0a3c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8545-2529 |
| PQID | 2558034004 |
| PQPubID | 1026352 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2558034004 crossref_citationtrail_10_1002_ima_22536 crossref_primary_10_1002_ima_22536 wiley_primary_10_1002_ima_22536_IMA22536 |
| PublicationCentury | 2000 |
| PublicationDate | September 2021 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: New York |
| PublicationTitle | International journal of imaging systems and technology |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2019; 2019 2011 2003; 13 2016; 2016 2014; 2014 2020; 10 2016; 78 2012; 308 2016; 11 1977 2007; 114 2013; 15 2018; 5 2016; 2 2015; 60 2020; 73 2020 2019; 43 2014; 42(C) 2018 2020; 47 2017 2015 2017; 18 2014; 9 2017; 105 e_1_2_8_28_1 e_1_2_8_29_1 Benson CC (e_1_2_8_25_1) 2017 e_1_2_8_26_1 Jalal Deen K (e_1_2_8_22_1) 2017; 18 e_1_2_8_3_1 e_1_2_8_2_1 Aju D (e_1_2_8_5_1) 2016; 78 e_1_2_8_4_1 Scarpace L (e_1_2_8_18_1) 2016; 11 Raj ETMS (e_1_2_8_6_1) 2016; 11 e_1_2_8_7_1 Marusina MY (e_1_2_8_27_1) 2017; 18 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_23_1 Hedyehzadeh M (e_1_2_8_8_1) 2020; 73 Mandelbrot BB (e_1_2_8_24_1) 1977 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_10_1 Zahran BM (e_1_2_8_9_1) 2014; 9 e_1_2_8_11_1 e_1_2_8_12_1 Pedano N (e_1_2_8_17_1) 2016; 2 |
| References_xml | – year: 2011 – volume: 11 start-page: 5326 issue: 7 year: 2016 end-page: 5331 article-title: Boundary detection algorithm for brain tumor position and area detection using OPENCV publication-title: Int J Appl Eng Res – volume: 15 start-page: ii1 year: 2013 end-page: ii56 article-title: CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006‐2010 publication-title: Neuro Oncol – volume: 114 start-page: 97 issue: 2 year: 2007 end-page: 109 article-title: The 2007 WHO classification of tumours of the central nervous system publication-title: Acta Neuropathol – volume: 5 start-page: 23 issue: 1 year: 2018 end-page: 30 article-title: Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network publication-title: Brain Inform – volume: 18 start-page: 51 issue: 1 year: 2017 article-title: MRI image processing based on fractal analysis publication-title: Asian Pac J Cancer Prev – volume: 11 start-page: 1 issue: 4 year: 2016 article-title: Radiology data from the cancer genome atlas glioblastoma multiforme [TCGA‐GBM] collection publication-title: Cancer Imaging Arch – volume: 2014 start-page: 1 year: 2014 end-page: 8 article-title: An improved FCM medical image segmentation algorithm based on MMTD publication-title: Comput Math Methods Med – year: 1977 – volume: 43 issue: 5 year: 2019 article-title: Glioma tumor grade identification using artificial intelligent techniques publication-title: J Med Syst – volume: 2016 start-page: 1 year: 2016 end-page: 14 article-title: FCM clustering algorithms for segmentation of brain MR images publication-title: Adv Fuzzy Syst – volume: 47 start-page: 3044 year: 2020 end-page: 3053 article-title: Automated glioma grading on conventional MRI images using deep convolutional neural networks publication-title: Med Phys – volume: 2 year: 2016 article-title: Radiology data from the cancer genome atlas low grade glioma [TCGA‐LGG] collection publication-title: Cancer Imaging Arch – volume: 78 start-page: 149 issue: 9 year: 2016 end-page: 159 article-title: T1‐T2 weighted MR image composition and cataloguing of brain tumor using regularized logistic regression publication-title: J Teknol – volume: 9 start-page: 673 issue: 4 year: 2014 end-page: 678 article-title: Classification of brain tumor using neural network publication-title: Int Rev Comput Softw – volume: 73 start-page: 856 issue: 6 year: 2020 end-page: 865 article-title: Evaluation of conventional machine learning methods for brain tumour type classification publication-title: Comp Rend L Acad Bulg DES Sci – year: 2020 – volume: 2019 start-page: 1 issue: 1 year: 2019 end-page: 11 article-title: Image segmentation based on fuzzy clustering with cellular automata and features weighting publication-title: EURASIP J Image Video Process – volume: 308 start-page: 1881 issue: 18 year: 2012 end-page: 1888 article-title: Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low‐grade gliomas publication-title: JAMA – year: 2017 publication-title: Communications and Informatics (ICACCI) – volume: 42(C) start-page: 255 year: 2014 end-page: 262 article-title: Fuzzy c‐means (FCM) for optic cup and disc segmentation with morphological operation publication-title: Proc Comput Sci – year: 2015 – volume: 10 start-page: 1999 issue: 6 year: 2020 article-title: Classification of Brain Tumors from MRI Images Using a Convolutional Neural Network publication-title: Appl Sci – volume: 13 start-page: 352 issue: 5–6 year: 2003 end-page: 362 article-title: Fractal analysis of tumor in brain MR images publication-title: Mach Vis Appl – volume: 105 start-page: 30 year: 2017 end-page: 47 article-title: Grasshopper optimisation algorithm: theory and application publication-title: Adv Eng Softw – start-page: 106 year: 2018 end-page: 114 – volume: 18 start-page: 1869 issue: 7 year: 2017 article-title: Fuzzy‐C‐means clustering based segmentation and CNN‐classification for accurate segmentation of lung nodules publication-title: Asian Pac J Cancer Prev – volume: 60 start-page: 6937 issue: 17 year: 2015 end-page: 6947 article-title: Fractal analysis: fractal dimension and lacunarity from MR images for differentiating the grades of glioma publication-title: Phys Med Biol – volume: 73 start-page: 856 issue: 6 year: 2020 ident: e_1_2_8_8_1 article-title: Evaluation of conventional machine learning methods for brain tumour type classification publication-title: Comp Rend L Acad Bulg DES Sci – ident: e_1_2_8_23_1 doi: 10.1186/s13640-019-0436-5 – volume: 18 start-page: 1869 issue: 7 year: 2017 ident: e_1_2_8_22_1 article-title: Fuzzy‐C‐means clustering based segmentation and CNN‐classification for accurate segmentation of lung nodules publication-title: Asian Pac J Cancer Prev – year: 2017 ident: e_1_2_8_25_1 publication-title: Communications and Informatics (ICACCI) – volume: 9 start-page: 673 issue: 4 year: 2014 ident: e_1_2_8_9_1 article-title: Classification of brain tumor using neural network publication-title: Int Rev Comput Softw – ident: e_1_2_8_20_1 doi: 10.1155/2016/3406406 – ident: e_1_2_8_21_1 doi: 10.1155/2014/298473 – volume: 11 start-page: 5326 issue: 7 year: 2016 ident: e_1_2_8_6_1 article-title: Boundary detection algorithm for brain tumor position and area detection using OPENCV publication-title: Int J Appl Eng Res – volume: 78 start-page: 149 issue: 9 year: 2016 ident: e_1_2_8_5_1 article-title: T1‐T2 weighted MR image composition and cataloguing of brain tumor using regularized logistic regression publication-title: J Teknol – ident: e_1_2_8_11_1 doi: 10.1007/s40708-017-0075-5 – ident: e_1_2_8_3_1 doi: 10.1093/neuonc/not151 – volume: 2 year: 2016 ident: e_1_2_8_17_1 article-title: Radiology data from the cancer genome atlas low grade glioma [TCGA‐LGG] collection publication-title: Cancer Imaging Arch – ident: e_1_2_8_29_1 doi: 10.1016/j.advengsoft.2017.01.004 – ident: e_1_2_8_26_1 doi: 10.1088/0031-9155/60/17/6937 – ident: e_1_2_8_19_1 doi: 10.1016/j.procs.2014.11.060 – ident: e_1_2_8_28_1 doi: 10.1007/s00138-002-0087-9 – ident: e_1_2_8_15_1 doi: 10.1002/mp.14168 – volume: 11 start-page: 1 issue: 4 year: 2016 ident: e_1_2_8_18_1 article-title: Radiology data from the cancer genome atlas glioblastoma multiforme [TCGA‐GBM] collection publication-title: Cancer Imaging Arch – ident: e_1_2_8_2_1 doi: 10.1007/s00401-007-0243-4 – ident: e_1_2_8_16_1 doi: 10.1109/EMBC.2015.7318458 – volume: 18 start-page: 51 issue: 1 year: 2017 ident: e_1_2_8_27_1 article-title: MRI image processing based on fractal analysis publication-title: Asian Pac J Cancer Prev – ident: e_1_2_8_10_1 doi: 10.1007/978-3-030-02628-8_12 – ident: e_1_2_8_12_1 doi: 10.1109/ICRTIT.2011.5972341 – ident: e_1_2_8_13_1 doi: 10.1007/s10916-019-1228-2 – volume-title: Fractal, Form Dimension and Chance year: 1977 ident: e_1_2_8_24_1 – ident: e_1_2_8_4_1 doi: 10.1001/jama.2012.12807 – ident: e_1_2_8_7_1 doi: 10.1109/PICC.2015.7455799 – ident: e_1_2_8_14_1 doi: 10.3390/app10061999 |
| SSID | ssj0011505 |
| Score | 2.2904077 |
| Snippet | Detection of brain tumor's grade is a very important task in treatment plan design which was done using invasive methods such as pathological examination. This... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1670 |
| SubjectTerms | Algorithms Brain Brain cancer Classification Feature extraction fuzzy C‐means GLCM glioma grade grasshopper optimization algorithm Hemorrhage Image segmentation local binary pattern Machine learning Magnetic resonance imaging Medical imaging Optimization Optimization algorithms Support vector machines Tumors |
| Title | Glioma grade detection using grasshopper optimization algorithm‐optimized machine learning methods: The Cancer Imaging Archive study |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.22536 https://www.proquest.com/docview/2558034004 |
| Volume | 31 |
| WOSCitedRecordID | wos000609305700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1098-1098 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011505 issn: 0899-9457 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BAhIcaHmJVyur4tBLRGJ7Ey89IWABiaKqgopb5NjO7kqbzSpZOPfUc39jf0nHjncBCSQkblEyecieZ_z5G4ADLUzSCXUniFieBTynOhBU0iA0CVc8ybR2K_i_rpLra3F31_kxB9-me2EafojZDzdrGc5fWwOXWX34SBo6sLRBtM3ieVigqLe8BQunP7u3V7NFBMx1HIJRWBJK3k6mxEIhPZzd_DwcPeaYTzNVF2q6H971kR9h1WeY5LhRiTWYM6N1WHnCO7gOSw73qeoN-HM-HJSFJL1KakO0mThk1ohYOHzPnq3rfjkem4qU6FsKv2mTyGGvrAaTfvHv919_wWhSOGCmIb4TRY807anrI4LKSE6sflXksnB9kYinvCWO33YTbrtnNycXgW_NECiKCUxAteVxwZHNpFF5wkyulMraPBJKaM5Z3NF2EUdFUoUhhoNMSZ5zEUUxzUPJFNuC1qgcmW0gWAQaHeaCxSiDCVjGpOYxM0ZhKYTOdwe-TmcoVZ633LbPGKYN4zJNcZBTN8g78GUmOm7IOl4S2p9Oc-rttU6xsBKoQugx8HVuQl9_QHr5_dgd7L5ddA-WqQXDOHDaPrQm1b35BIvqYTKoq89ecf8Dha71Dw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT9swFH5iLRPjAAyYBnTDmnbgEpHYbuIgLqjQtaJUaALELXJsp1Rqmirpdt6JM79xv2S24xYmbdKk3aLkJbH8np_fsz9_D-CzZCqKfRl7AclSj2ZYegxz7PkqooJGqZR2B_9uEA2H7P4-vl6B08VZmJofYrngZkaG9ddmgJsF6eNn1tCx4Q3CbRK-gibVZtRuQPP8a_d2sNxF0MGOhTAyw0JJ29GCWcjHx8uXf5-PnoPMl6GqnWu6m__Xyi3YcDEmOquN4i2sqOk2rL9gHtyG1xb5KaodePwyGRc5R6OSS4Wkmlts1hQZQPzI3K2qh2I2UyUqtHfJ3bFNxCejohzPH_KfP57cAyVRbqGZCrlaFCNUF6iuTpA2R9QxFlaifm4rIyFHeossw-0u3HYvbjo9zxVn8ATWIYyHpWFy0V2bciWyiKhMCJG2acAEk5SSMJZmG0cEXPi-nhBSwWlGWRCEOPM5EeQdNKbFVL0HpNNAJf2MkVDL6BAsJVxqhSoldDKk3e8eHC1UlAjHXG4KaEySmnMZJ7qTE9vJe_BpKTqr6Tr-JNRa6DlxI7ZKdGrFfGI8mv6d1ejfP5D0r87sxf6_ix7CWu_mapAM-sPLA3iDDTTGQtVa0JiX39QHWBXf5-Oq_Ois-BcmT_j_ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH8a20DswNgAsa0Ma-LAJWpiu4mDdplWulWUqpo2tFvk2E5aqWmqpHDeaWf-Rv4SbMdthzQkJG5R8vKh5_fl-OffA_ggmYpiX8ZeQLLUoxmWHsMce76KqKBRKqVdwf82iIZDdnsbjzbgdLkXpuGHWP1wM55h47VxcDWXWXvNGjoxvEG4Q8InsEU7cajdcqt71bsZrFYRdLFjIYzMsFDSTrRkFvJxe3Xzn_loXWQ-LFVtrunt_t9XvoQXrsZEZ41R7MGGmu3DzgPmwX14apGfon4F9xfTSVlwlFdcKiTVwmKzZsgA4nNztq7H5XyuKlTq6FK4bZuIT_OymizGxa-7n-6Ckqiw0EyFXC-KHDUNqutPSJsjOjcWVqF-YTsjIUd6iyzD7Wu46X2-Pr_0XHMGT2BdwnhYGiYXrdqUK5FFRGVCiLRDAyaYpJSEsTTLOCLgwvd1QkgFpxllQRDizOdEkDewOStn6i0gPQ1U0s8YCbWMLsFSwiUNiVJCT4Z0-D2Aj8shSoRjLjcNNKZJw7mME63kxCr5AE5WovOGruMxodZynBPnsXWip1bMJyai6dfZEf37A5L-1zN7cPjvou_h2ajbSwb94ZcjeI4NMsYi1Vqwuai-q3ewLX4sJnV17Iz4N71X-Ho |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glioma+grade+detection+using+grasshopper+optimization+algorithm%E2%80%90optimized+machine+learning+methods%3A+The+Cancer+Imaging+Archive+study&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Hedyehzadeh%2C+Mohammadreza&rft.au=Maghooli%2C+Keivan&rft.au=MomenGharibvand%2C+Mohammad&rft.date=2021-09-01&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=31&rft.issue=3&rft.spage=1670&rft.epage=1677&rft_id=info:doi/10.1002%2Fima.22536&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ima_22536 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon |