Glioma grade detection using grasshopper optimization algorithm‐optimized machine learning methods: The Cancer Imaging Archive study

Detection of brain tumor's grade is a very important task in treatment plan design which was done using invasive methods such as pathological examination. This examination needs resection procedure and resulted in pain, hemorrhage and infection. The aim of this study is to provide an automated...

Full description

Saved in:
Bibliographic Details
Published in:International journal of imaging systems and technology Vol. 31; no. 3; pp. 1670 - 1677
Main Authors: Hedyehzadeh, Mohammadreza, Maghooli, Keivan, MomenGharibvand, Mohammad
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01.09.2021
Wiley Subscription Services, Inc
Subjects:
ISSN:0899-9457, 1098-1098
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Detection of brain tumor's grade is a very important task in treatment plan design which was done using invasive methods such as pathological examination. This examination needs resection procedure and resulted in pain, hemorrhage and infection. The aim of this study is to provide an automated non‐invasive method for estimation of brain tumor's grade using Magnetic Resonance Images (MRI). After pre‐processing, using Fuzzy C‐Means (FCM) segmentation method, tumor region was extracted from post‐processed images. In feature extraction, texture, Local Binary Pattern (LBP) and fractal‐based features were extracted using Matlab software. Then using Grasshopper Optimization Algorithm (GOA), parameters of three different classification methods including Random Forest (RF), K‐Nearest Neighbor (KNN) and Support Vector Machine (SVM) were optimized. Finally, performance of three applied classifiers before and after optimization were compared. The results showed that the random forest with accuracy of 99.09% has achieved better performance comparing other classification methods.
AbstractList Detection of brain tumor's grade is a very important task in treatment plan design which was done using invasive methods such as pathological examination. This examination needs resection procedure and resulted in pain, hemorrhage and infection. The aim of this study is to provide an automated non‐invasive method for estimation of brain tumor's grade using Magnetic Resonance Images (MRI). After pre‐processing, using Fuzzy C‐Means (FCM) segmentation method, tumor region was extracted from post‐processed images. In feature extraction, texture, Local Binary Pattern (LBP) and fractal‐based features were extracted using Matlab software. Then using Grasshopper Optimization Algorithm (GOA), parameters of three different classification methods including Random Forest (RF), K‐Nearest Neighbor (KNN) and Support Vector Machine (SVM) were optimized. Finally, performance of three applied classifiers before and after optimization were compared. The results showed that the random forest with accuracy of 99.09% has achieved better performance comparing other classification methods.
Author Hedyehzadeh, Mohammadreza
Maghooli, Keivan
MomenGharibvand, Mohammad
Author_xml – sequence: 1
  givenname: Mohammadreza
  orcidid: 0000-0002-8545-2529
  surname: Hedyehzadeh
  fullname: Hedyehzadeh, Mohammadreza
  organization: Islamic Azad University
– sequence: 2
  givenname: Keivan
  surname: Maghooli
  fullname: Maghooli, Keivan
  email: k_maghooli@srbiau.ac.ir
  organization: Islamic Azad University
– sequence: 3
  givenname: Mohammad
  surname: MomenGharibvand
  fullname: MomenGharibvand, Mohammad
  organization: Ahvaz Jundishapur University of Medical Sciences
BookMark eNp1kL1OwzAUhS0EEm1h4A0sMTGkvc5fE7aqglKpiKXMkePcNK6SONgOqExMzDwjT0LSdkKwXEv3fOdY9wzJaa1qJOSKwZgBuBNZ8bHrBl54QgYM4sjpxykZQBTHTuwH03MyNGYLwFgAwYB8LkqpKk43mmdIM7QorFQ1bY2sN_3WmEI1DWqqGisr-c73Mi83SktbVN8fX0cBM1pxUcgaaYlc172_QluozNzSdYF0zmvR5Swrvum1me7gV6TGttnugpzlvDR4eXxH5Pn-bj1_cFZPi-V8tnKEG09Dx80gBNbdknIU-dTDXAiRBj6LRJT5vhfGGTDPFYwLAExZKrif-xFjoZsD94Q3IteH3EarlxaNTbaq1XX3ZeIGQQSeD-B31ORACa2M0ZgnQtr94VZzWSYMkr7spCs72ZfdOW5-ORrdqXr3J3tMf5Ml7v4Hk-Xj7OD4ATeFlIY
CitedBy_id crossref_primary_10_1007_s10143_025_03515_z
crossref_primary_10_1007_s11760_024_03626_y
crossref_primary_10_1186_s41983_025_00980_7
crossref_primary_10_1007_s11831_024_10128_0
crossref_primary_10_1016_j_suronc_2023_101986
Cites_doi 10.1186/s13640-019-0436-5
10.1155/2016/3406406
10.1155/2014/298473
10.1007/s40708-017-0075-5
10.1093/neuonc/not151
10.1016/j.advengsoft.2017.01.004
10.1088/0031-9155/60/17/6937
10.1016/j.procs.2014.11.060
10.1007/s00138-002-0087-9
10.1002/mp.14168
10.1007/s00401-007-0243-4
10.1109/EMBC.2015.7318458
10.1007/978-3-030-02628-8_12
10.1109/ICRTIT.2011.5972341
10.1007/s10916-019-1228-2
10.1001/jama.2012.12807
10.1109/PICC.2015.7455799
10.3390/app10061999
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC.
Copyright_xml – notice: 2021 Wiley Periodicals LLC.
DBID AAYXX
CITATION
DOI 10.1002/ima.22536
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1098-1098
EndPage 1677
ExternalDocumentID 10_1002_ima_22536
IMA22536
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HDBZQ
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
ID FETCH-LOGICAL-c2976-2d0601089baecf73efcccb5418c8d44369d0132c1ac00eb1bca4f481162f0a3c3
IEDL.DBID DRFUL
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000609305700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0899-9457
IngestDate Fri Jul 25 02:52:59 EDT 2025
Sat Nov 29 02:46:14 EST 2025
Tue Nov 18 21:38:27 EST 2025
Wed Jan 22 16:28:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2976-2d0601089baecf73efcccb5418c8d44369d0132c1ac00eb1bca4f481162f0a3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8545-2529
PQID 2558034004
PQPubID 1026352
PageCount 8
ParticipantIDs proquest_journals_2558034004
crossref_citationtrail_10_1002_ima_22536
crossref_primary_10_1002_ima_22536
wiley_primary_10_1002_ima_22536_IMA22536
PublicationCentury 2000
PublicationDate September 2021
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle International journal of imaging systems and technology
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2019; 2019
2011
2003; 13
2016; 2016
2014; 2014
2020; 10
2016; 78
2012; 308
2016; 11
1977
2007; 114
2013; 15
2018; 5
2016; 2
2015; 60
2020; 73
2020
2019; 43
2014; 42(C)
2018
2020; 47
2017
2015
2017; 18
2014; 9
2017; 105
e_1_2_8_28_1
e_1_2_8_29_1
Benson CC (e_1_2_8_25_1) 2017
e_1_2_8_26_1
Jalal Deen K (e_1_2_8_22_1) 2017; 18
e_1_2_8_3_1
e_1_2_8_2_1
Aju D (e_1_2_8_5_1) 2016; 78
e_1_2_8_4_1
Scarpace L (e_1_2_8_18_1) 2016; 11
Raj ETMS (e_1_2_8_6_1) 2016; 11
e_1_2_8_7_1
Marusina MY (e_1_2_8_27_1) 2017; 18
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_23_1
Hedyehzadeh M (e_1_2_8_8_1) 2020; 73
Mandelbrot BB (e_1_2_8_24_1) 1977
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
Zahran BM (e_1_2_8_9_1) 2014; 9
e_1_2_8_11_1
e_1_2_8_12_1
Pedano N (e_1_2_8_17_1) 2016; 2
References_xml – year: 2011
– volume: 11
  start-page: 5326
  issue: 7
  year: 2016
  end-page: 5331
  article-title: Boundary detection algorithm for brain tumor position and area detection using OPENCV
  publication-title: Int J Appl Eng Res
– volume: 15
  start-page: ii1
  year: 2013
  end-page: ii56
  article-title: CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006‐2010
  publication-title: Neuro Oncol
– volume: 114
  start-page: 97
  issue: 2
  year: 2007
  end-page: 109
  article-title: The 2007 WHO classification of tumours of the central nervous system
  publication-title: Acta Neuropathol
– volume: 5
  start-page: 23
  issue: 1
  year: 2018
  end-page: 30
  article-title: Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network
  publication-title: Brain Inform
– volume: 18
  start-page: 51
  issue: 1
  year: 2017
  article-title: MRI image processing based on fractal analysis
  publication-title: Asian Pac J Cancer Prev
– volume: 11
  start-page: 1
  issue: 4
  year: 2016
  article-title: Radiology data from the cancer genome atlas glioblastoma multiforme [TCGA‐GBM] collection
  publication-title: Cancer Imaging Arch
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 8
  article-title: An improved FCM medical image segmentation algorithm based on MMTD
  publication-title: Comput Math Methods Med
– year: 1977
– volume: 43
  issue: 5
  year: 2019
  article-title: Glioma tumor grade identification using artificial intelligent techniques
  publication-title: J Med Syst
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 14
  article-title: FCM clustering algorithms for segmentation of brain MR images
  publication-title: Adv Fuzzy Syst
– volume: 47
  start-page: 3044
  year: 2020
  end-page: 3053
  article-title: Automated glioma grading on conventional MRI images using deep convolutional neural networks
  publication-title: Med Phys
– volume: 2
  year: 2016
  article-title: Radiology data from the cancer genome atlas low grade glioma [TCGA‐LGG] collection
  publication-title: Cancer Imaging Arch
– volume: 78
  start-page: 149
  issue: 9
  year: 2016
  end-page: 159
  article-title: T1‐T2 weighted MR image composition and cataloguing of brain tumor using regularized logistic regression
  publication-title: J Teknol
– volume: 9
  start-page: 673
  issue: 4
  year: 2014
  end-page: 678
  article-title: Classification of brain tumor using neural network
  publication-title: Int Rev Comput Softw
– volume: 73
  start-page: 856
  issue: 6
  year: 2020
  end-page: 865
  article-title: Evaluation of conventional machine learning methods for brain tumour type classification
  publication-title: Comp Rend L Acad Bulg DES Sci
– year: 2020
– volume: 2019
  start-page: 1
  issue: 1
  year: 2019
  end-page: 11
  article-title: Image segmentation based on fuzzy clustering with cellular automata and features weighting
  publication-title: EURASIP J Image Video Process
– volume: 308
  start-page: 1881
  issue: 18
  year: 2012
  end-page: 1888
  article-title: Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low‐grade gliomas
  publication-title: JAMA
– year: 2017
  publication-title: Communications and Informatics (ICACCI)
– volume: 42(C)
  start-page: 255
  year: 2014
  end-page: 262
  article-title: Fuzzy c‐means (FCM) for optic cup and disc segmentation with morphological operation
  publication-title: Proc Comput Sci
– year: 2015
– volume: 10
  start-page: 1999
  issue: 6
  year: 2020
  article-title: Classification of Brain Tumors from MRI Images Using a Convolutional Neural Network
  publication-title: Appl Sci
– volume: 13
  start-page: 352
  issue: 5–6
  year: 2003
  end-page: 362
  article-title: Fractal analysis of tumor in brain MR images
  publication-title: Mach Vis Appl
– volume: 105
  start-page: 30
  year: 2017
  end-page: 47
  article-title: Grasshopper optimisation algorithm: theory and application
  publication-title: Adv Eng Softw
– start-page: 106
  year: 2018
  end-page: 114
– volume: 18
  start-page: 1869
  issue: 7
  year: 2017
  article-title: Fuzzy‐C‐means clustering based segmentation and CNN‐classification for accurate segmentation of lung nodules
  publication-title: Asian Pac J Cancer Prev
– volume: 60
  start-page: 6937
  issue: 17
  year: 2015
  end-page: 6947
  article-title: Fractal analysis: fractal dimension and lacunarity from MR images for differentiating the grades of glioma
  publication-title: Phys Med Biol
– volume: 73
  start-page: 856
  issue: 6
  year: 2020
  ident: e_1_2_8_8_1
  article-title: Evaluation of conventional machine learning methods for brain tumour type classification
  publication-title: Comp Rend L Acad Bulg DES Sci
– ident: e_1_2_8_23_1
  doi: 10.1186/s13640-019-0436-5
– volume: 18
  start-page: 1869
  issue: 7
  year: 2017
  ident: e_1_2_8_22_1
  article-title: Fuzzy‐C‐means clustering based segmentation and CNN‐classification for accurate segmentation of lung nodules
  publication-title: Asian Pac J Cancer Prev
– year: 2017
  ident: e_1_2_8_25_1
  publication-title: Communications and Informatics (ICACCI)
– volume: 9
  start-page: 673
  issue: 4
  year: 2014
  ident: e_1_2_8_9_1
  article-title: Classification of brain tumor using neural network
  publication-title: Int Rev Comput Softw
– ident: e_1_2_8_20_1
  doi: 10.1155/2016/3406406
– ident: e_1_2_8_21_1
  doi: 10.1155/2014/298473
– volume: 11
  start-page: 5326
  issue: 7
  year: 2016
  ident: e_1_2_8_6_1
  article-title: Boundary detection algorithm for brain tumor position and area detection using OPENCV
  publication-title: Int J Appl Eng Res
– volume: 78
  start-page: 149
  issue: 9
  year: 2016
  ident: e_1_2_8_5_1
  article-title: T1‐T2 weighted MR image composition and cataloguing of brain tumor using regularized logistic regression
  publication-title: J Teknol
– ident: e_1_2_8_11_1
  doi: 10.1007/s40708-017-0075-5
– ident: e_1_2_8_3_1
  doi: 10.1093/neuonc/not151
– volume: 2
  year: 2016
  ident: e_1_2_8_17_1
  article-title: Radiology data from the cancer genome atlas low grade glioma [TCGA‐LGG] collection
  publication-title: Cancer Imaging Arch
– ident: e_1_2_8_29_1
  doi: 10.1016/j.advengsoft.2017.01.004
– ident: e_1_2_8_26_1
  doi: 10.1088/0031-9155/60/17/6937
– ident: e_1_2_8_19_1
  doi: 10.1016/j.procs.2014.11.060
– ident: e_1_2_8_28_1
  doi: 10.1007/s00138-002-0087-9
– ident: e_1_2_8_15_1
  doi: 10.1002/mp.14168
– volume: 11
  start-page: 1
  issue: 4
  year: 2016
  ident: e_1_2_8_18_1
  article-title: Radiology data from the cancer genome atlas glioblastoma multiforme [TCGA‐GBM] collection
  publication-title: Cancer Imaging Arch
– ident: e_1_2_8_2_1
  doi: 10.1007/s00401-007-0243-4
– ident: e_1_2_8_16_1
  doi: 10.1109/EMBC.2015.7318458
– volume: 18
  start-page: 51
  issue: 1
  year: 2017
  ident: e_1_2_8_27_1
  article-title: MRI image processing based on fractal analysis
  publication-title: Asian Pac J Cancer Prev
– ident: e_1_2_8_10_1
  doi: 10.1007/978-3-030-02628-8_12
– ident: e_1_2_8_12_1
  doi: 10.1109/ICRTIT.2011.5972341
– ident: e_1_2_8_13_1
  doi: 10.1007/s10916-019-1228-2
– volume-title: Fractal, Form Dimension and Chance
  year: 1977
  ident: e_1_2_8_24_1
– ident: e_1_2_8_4_1
  doi: 10.1001/jama.2012.12807
– ident: e_1_2_8_7_1
  doi: 10.1109/PICC.2015.7455799
– ident: e_1_2_8_14_1
  doi: 10.3390/app10061999
SSID ssj0011505
Score 2.290504
Snippet Detection of brain tumor's grade is a very important task in treatment plan design which was done using invasive methods such as pathological examination. This...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1670
SubjectTerms Algorithms
Brain
Brain cancer
Classification
Feature extraction
fuzzy C‐means
GLCM
glioma grade
grasshopper optimization algorithm
Hemorrhage
Image segmentation
local binary pattern
Machine learning
Magnetic resonance imaging
Medical imaging
Optimization
Optimization algorithms
Support vector machines
Tumors
Title Glioma grade detection using grasshopper optimization algorithm‐optimized machine learning methods: The Cancer Imaging Archive study
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.22536
https://www.proquest.com/docview/2558034004
Volume 31
WOSCitedRecordID wos000609305700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1098-1098
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011505
  issn: 0899-9457
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH7a2iGNA7ABWtmYLMSBS7TEcdKEnaZB2aRSIbRJu0X2s5NWapoq6XbmxJm_kb8E23GzTgIJabcocX7ove_Zz_Hn7wG8VzL2Zci5hzzMPcYx8AQTzOM6KEWEgsbcbhQeDyeT5OYm_bYFp-u9MK0-RPfDzUSG7a9NgHPRnNyLhs6MbBCNwngb-lTjlvWg_-n76HrcLSLoXMcyGBMjQsmi4VpYyKcn3c0Ph6P7HHMzU7VDzej5oz7yBTxzGSY5ayGxB1tqsQ9PN3QH9-GJ5X1i8xJ-fpnPqpKTouZSEalWlpm1IIYOX5izTTOtlktVk0r3LaXbtEn4vKjq2Wpa_v7xy11QkpSWmKmIq0RRkLY8dfORaDCSc4OvmlyWti4ScZK3xOrbvoLr0eer8wvPlWbwkOoExqPS6LhoywquMB-GKkdEEbEgwUQyFsapNIs4GHD0fT0cCOQsZ0kQxDT3eYjha-gtqoU6AMJQoJ6mSaUUYywSPE5zDZQQjbJeyv0BfFh7KEOnW27KZ8yzVnGZZtrImTXyAN51TZetWMffGh2t3Zy5eG0yPbFKNIR0j6FfZx367wdkl1_P7MGb_296CLvUkGEsOe0Ieqv6Vr2FHbxbzZr62AH3D8839Ys
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT9swFMefoDDBDsDYEAwG1sRhl4gkdtIUcUGwjopSTRNI3CL72SmVmqZKCmdOnPkb-UuwHbcwiUmTuEWJ80P2e_az8_XnAewrGfuScu4hp5nHOAaeYIJ5XDuliFCEMbcbhbvNXi-5vm79noOj6V6Ymg8xW3AznmH7a-PgZkH64IUaOjDcoDCi8TwsMG1GUQMWTv-0r7qzvwg62LESxsRQKFnUnJKF_PBgdvPf49FLkPk6VLVjTXv1fV-5BisuxiTHtVF8gjk1WoePr8iD6_DBKj-x-gwPv4aDIuekX3KpiFQTq80aESOI75uzVXVTjMeqJIXuXXK3bZPwYb8oB5Ob_On-0V1QkuRWmqmIy0XRJ3WC6uqQaHMkJ8bCStLJbWYk4qC3xBJuv8BV--flyZnnkjN4GOoQxgulIbnoqhVcYdakKkNEEbEgwUQyRuOWNL9xMODo-3pAEMhZxpIgiMPM5xTpBjRGxUhtAmEoUE_UpFKKMRYJHrcybSoUDVuvxf0t-DFtohQdudwk0BimNXM5THUlp7aSt-D7rOi4xnW8VWhn2s6p89gq1VOrxKemR9Ovsy367weknYtje_D1_4vuwdLZ5UU37XZ659uwHBppjJWq7UBjUt6qb7CId5NBVe46K34Gd0T5ew
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT9swFMef-DHQdhgbMA3WMWvagUtEEjtpgnZBQEdFV6FpSNwi-9kplZqmSjrOnDjzN_KXYDtuy6RNQuIWJc4P2e_Zz_HXnwfwTcnYl5RzDznNPcYx8AQTzOPaKUWEIoy53Sjca_f7ydVVerEE32d7YRo-xPyHm_EM218bB1cTmR8sqKFDww0KIxovwyqL0li75erJr85lb76KoIMdK2FMDIWSRe0ZWcgPD-Y3_z0eLYLMp6GqHWs6Gy_7ynfw1sWY5KgxivewpMab8OYJeXAT1qzyE-stuPsxGpYFJ4OKS0Wkmlpt1pgYQfzAnK3r63IyURUpde9SuG2bhI8GZTWcXhcPt_fugpKksNJMRVwuigFpElTXh0SbIzk2FlaRbmEzIxEHvSWWcLsNl53T38dnnkvO4GGoQxgvlIbkoqtWcIV5m6ocEUXEggQTyRiNU2mWcTDg6Pt6QBDIWc6SIIjD3OcU6QdYGZdj9REIQ4F6oiaVUoyxSPA4zbWpUDRsvZT7O7A_a6IMHbncJNAYZQ1zOcx0JWe2knfg67zopMF1_KtQa9bOmfPYOtNTq8SnpkfTr7Mt-v8HZN2fR_Zg9_lFv8D6xUkn63X755_gdWiUMVap1oKVafVHfYZXeDMd1tWeM-JHDd_49g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glioma+grade+detection+using+grasshopper+optimization+algorithm%E2%80%90optimized+machine+learning+methods%3A+The+Cancer+Imaging+Archive+study&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Hedyehzadeh%2C+Mohammadreza&rft.au=Maghooli%2C+Keivan&rft.au=MomenGharibvand%2C+Mohammad&rft.date=2021-09-01&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=31&rft.issue=3&rft.spage=1670&rft.epage=1677&rft_id=info:doi/10.1002%2Fima.22536&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ima_22536
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon