Rain Wiper: An Incremental Randomly Wired Network for Single Image Deraining

Single image rain removal is a challenging ill‐posed problem due to various shapes and densities of rain streaks. We present a novel incremental randomly wired network (IRWN) for single image deraining. Different from previous methods, most structures of modules in IRWN are generated by a stochastic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum Jg. 38; H. 7; S. 159 - 169
Hauptverfasser: Liang, X., Qiu, B., Su, Z., Gao, C., Shi, X., Wang, R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Blackwell Publishing Ltd 01.10.2019
Schlagworte:
ISSN:0167-7055, 1467-8659
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single image rain removal is a challenging ill‐posed problem due to various shapes and densities of rain streaks. We present a novel incremental randomly wired network (IRWN) for single image deraining. Different from previous methods, most structures of modules in IRWN are generated by a stochastic network generator based on the random graph theory, which ease the burden of manual design and further help to characterize more complex rain streaks. To decrease network parameters and extract more details efficiently, the image pyramid is fused via the multi‐scale network structure. An incremental rectified loss is proposed to better remove rain streaks in different rain conditions and recover the texture information of target objects. Extensive experiments on synthetic and real‐world datasets demonstrate that the proposed method outperforms the state‐of‐the‐art methods significantly. In addition, an ablation study is conducted to illustrate the improvements obtained by different modules and loss items in IRWN.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.13825