Secrecy rate optimization for intelligent reflecting surface aided multi‐input‐single‐output terahertz communication

Intelligent reflecting surface (IRS) is an emerging paradigm to enhance terahertz (THz) communications with low hardware costs and reduced power consumptions. In this work, we study an IRS‐aided THz multi‐input‐single‐output secure communication system, where a base station (BS) transmits confidenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microwave and optical technology letters Jg. 62; H. 8; S. 2760 - 2765
Hauptverfasser: Chen, Wenjie, Chen, Zhi, Ma, Xinying, Chi, Yaojia, Li, Zhuoxun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.08.2020
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0895-2477, 1098-2760
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intelligent reflecting surface (IRS) is an emerging paradigm to enhance terahertz (THz) communications with low hardware costs and reduced power consumptions. In this work, we study an IRS‐aided THz multi‐input‐single‐output secure communication system, where a base station (BS) transmits confidential signals to a single‐antenna user with the presence of a single‐antenna eavesdropper. We seek to maximize the secrecy rate by designing the discrete phase‐shifts at the IRS and the precoder at the BS, which is an intractable nonconvex optimization problem. To solve it, we propose to iteratively design the above two matrix variables. Specifically, with a given phase‐shift matrix, we can obtain the optimal precoder by the Rayleigh‐Ritz theorem. And with a given precoder matrix, we propose a cross‐entropy‐based algorithm to obtain the optimal phase‐shift matrix. Numerical results demonstrate that our proposed solution is able to improve the secrecy rate than that of the case without IRS.
Bibliographie:Funding information
National Key Research and Development Project of China, Grant/Award Number: 2018YFB1801500
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0895-2477
1098-2760
DOI:10.1002/mop.32373