A systematic study on weak Galerkin finite element method for second‐order parabolic problems

In the present work, we have described a systematic numerical study on weak Galerkin (WG) finite element method for second‐order linear parabolic problems by allowing polynomial approximations with various degrees for each local element. Convergence of both semidiscrete and fully discrete WG solutio...

Full description

Saved in:
Bibliographic Details
Published in:Numerical methods for partial differential equations Vol. 39; no. 3; pp. 2444 - 2474
Main Authors: Deka, Bhupen, Kumar, Naresh
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01.05.2023
Wiley Subscription Services, Inc
Subjects:
ISSN:0749-159X, 1098-2426
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present work, we have described a systematic numerical study on weak Galerkin (WG) finite element method for second‐order linear parabolic problems by allowing polynomial approximations with various degrees for each local element. Convergence of both semidiscrete and fully discrete WG solutions are established in L∞L2$$ {L}^{\infty}\left({L}^2\right) $$ and L∞H1$$ {L}^{\infty}\left({H}^1\right) $$ norms for a general WG element 𝒫k(K),𝒫j(∂K),𝒫l(K)2, where k≥1$$ k\ge 1 $$, j≥0$$ j\ge 0 $$ and l≥0$$ l\ge 0 $$ are arbitrary integers. The fully discrete space–time discretization is based on a first order in time Euler scheme. Numerical experiments are reported to justify the robustness, reliability and accuracy of the WG finite element method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0749-159X
1098-2426
DOI:10.1002/num.22973