Permutations with fixed pattern densities

We study scaling limits of random permutations (“permutons”) constrained by having fixed densities of a finite number of patterns. We show that the limit shapes are determined by maximizing entropy over permutons with those constraints. In particular, we compute (exactly or numerically) the limit sh...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Random structures & algorithms Ročník 56; číslo 1; s. 220 - 250
Hlavní autoři: Kenyon, Richard, Král', Daniel, Radin, Charles, Winkler, Peter
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York John Wiley & Sons, Inc 01.01.2020
Wiley Subscription Services, Inc
Témata:
ISSN:1042-9832, 1098-2418
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study scaling limits of random permutations (“permutons”) constrained by having fixed densities of a finite number of patterns. We show that the limit shapes are determined by maximizing entropy over permutons with those constraints. In particular, we compute (exactly or numerically) the limit shapes with fixed 12 density, with fixed 12 and 123 densities, with fixed 12 density and the sum of 123 and 213 densities, and with fixed 123 and 321 densities. In the last case we explore a particular phase transition. To obtain our results, we also provide a description of permutons using a dynamic construction.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.20882