Permutations with fixed pattern densities

We study scaling limits of random permutations (“permutons”) constrained by having fixed densities of a finite number of patterns. We show that the limit shapes are determined by maximizing entropy over permutons with those constraints. In particular, we compute (exactly or numerically) the limit sh...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Random structures & algorithms Ročník 56; číslo 1; s. 220 - 250
Hlavní autori: Kenyon, Richard, Král', Daniel, Radin, Charles, Winkler, Peter
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York John Wiley & Sons, Inc 01.01.2020
Wiley Subscription Services, Inc
Predmet:
ISSN:1042-9832, 1098-2418
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We study scaling limits of random permutations (“permutons”) constrained by having fixed densities of a finite number of patterns. We show that the limit shapes are determined by maximizing entropy over permutons with those constraints. In particular, we compute (exactly or numerically) the limit shapes with fixed 12 density, with fixed 12 and 123 densities, with fixed 12 density and the sum of 123 and 213 densities, and with fixed 123 and 321 densities. In the last case we explore a particular phase transition. To obtain our results, we also provide a description of permutons using a dynamic construction.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.20882