A polynomial‐time approximation scheme for the maximal overlap of two independent Erdős–Rényi graphs

For two independent Erdős–Rényi graphs G(n,p)$$ \mathbf{G}\left(n,p\right) $$, we study the maximal overlap (i.e., the number of common edges) of these two graphs over all possible vertex correspondence. We present a polynomial‐time algorithm which finds a vertex correspondence whose overlap approxi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms Jg. 65; H. 1; S. 220 - 257
Hauptverfasser: Ding, Jian, Du, Hang, Gong, Shuyang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York John Wiley & Sons, Inc 01.08.2024
Wiley Subscription Services, Inc
Schlagworte:
ISSN:1042-9832, 1098-2418
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For two independent Erdős–Rényi graphs G(n,p)$$ \mathbf{G}\left(n,p\right) $$, we study the maximal overlap (i.e., the number of common edges) of these two graphs over all possible vertex correspondence. We present a polynomial‐time algorithm which finds a vertex correspondence whose overlap approximates the maximal overlap up to a multiplicative factor that is arbitrarily close to 1. As a by‐product, we prove that the maximal overlap is asymptotically n2α−1$$ \frac{n}{2\alpha -1} $$ for p=n−α$$ p={n}^{-\alpha } $$ with some constant α∈(1/2,1)$$ \alpha \in \left(1/2,1\right) $$.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.21212