Recent developments in symmetry‐adapted perturbation theory
Symmetry‐adapted perturbation theory (SAPT) is a well‐established method to compute accurate intermolecular interaction energies in terms of physical effects such as electrostatics, induction (polarization), dispersion, and exchange. With many theory levels and variants, and several computer impleme...
Uložené v:
| Vydané v: | Wiley interdisciplinary reviews. Computational molecular science Ročník 10; číslo 3; s. e1452 - n/a |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken, USA
Wiley Periodicals, Inc
01.05.2020
Wiley Subscription Services, Inc |
| Predmet: | |
| ISSN: | 1759-0876, 1759-0884 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Symmetry‐adapted perturbation theory (SAPT) is a well‐established method to compute accurate intermolecular interaction energies in terms of physical effects such as electrostatics, induction (polarization), dispersion, and exchange. With many theory levels and variants, and several computer implementations available, closed‐shell SAPT has been applied to produce numerous intermolecular potential energy surfaces for complexes of experimental interest, and to elucidate the interactions in various complexes relevant to catalysis, organic synthesis, and biochemistry. In contrast, the development of SAPT for general open‐shell complexes is still a work in progress. In the last decade, new developments from several research groups, including the author's, have greatly enhanced the capabilities of SAPT. The new and emerging approaches are designed to make SAPT more widely applicable (including interactions involving multireference systems, complexes in arbitrary spin states, and intramolecular noncovalent interactions), more accurate (enhanced description of intramolecular correlation, a better account of exchange effects, relativistic SAPT, and explicitly correlated SAPT), and more efficient (enhanced density‐fitted implementations, linear‐scaling variants, empirical dispersion, and an implementation on graphics processing units). The new developments open up avenues for SAPT applications to an unprecedented variety of weakly interacting complexes.
This article is categorized under:
Electronic Structure Theory > Ab Initio Electronic Structure Methods
Electronic Structure Theory > Density Functional Theory
Molecular and Statistical Mechanics > Molecular Interactions
Most important concepts reviewed in this work, shaped into a noncovalently interacting complex. |
|---|---|
| AbstractList | Symmetry‐adapted perturbation theory (SAPT) is a well‐established method to compute accurate intermolecular interaction energies in terms of physical effects such as electrostatics, induction (polarization), dispersion, and exchange. With many theory levels and variants, and several computer implementations available, closed‐shell SAPT has been applied to produce numerous intermolecular potential energy surfaces for complexes of experimental interest, and to elucidate the interactions in various complexes relevant to catalysis, organic synthesis, and biochemistry. In contrast, the development of SAPT for general open‐shell complexes is still a work in progress. In the last decade, new developments from several research groups, including the author's, have greatly enhanced the capabilities of SAPT. The new and emerging approaches are designed to make SAPT more
widely applicable
(including interactions involving multireference systems, complexes in arbitrary spin states, and intramolecular noncovalent interactions), more
accurate
(enhanced description of intramolecular correlation, a better account of exchange effects, relativistic SAPT, and explicitly correlated SAPT), and more
efficient
(enhanced density‐fitted implementations, linear‐scaling variants, empirical dispersion, and an implementation on graphics processing units). The new developments open up avenues for SAPT applications to an unprecedented variety of weakly interacting complexes.
This article is categorized under:
Electronic Structure Theory > Ab Initio Electronic Structure Methods
Electronic Structure Theory > Density Functional Theory
Molecular and Statistical Mechanics > Molecular Interactions Symmetry‐adapted perturbation theory (SAPT) is a well‐established method to compute accurate intermolecular interaction energies in terms of physical effects such as electrostatics, induction (polarization), dispersion, and exchange. With many theory levels and variants, and several computer implementations available, closed‐shell SAPT has been applied to produce numerous intermolecular potential energy surfaces for complexes of experimental interest, and to elucidate the interactions in various complexes relevant to catalysis, organic synthesis, and biochemistry. In contrast, the development of SAPT for general open‐shell complexes is still a work in progress. In the last decade, new developments from several research groups, including the author's, have greatly enhanced the capabilities of SAPT. The new and emerging approaches are designed to make SAPT more widely applicable (including interactions involving multireference systems, complexes in arbitrary spin states, and intramolecular noncovalent interactions), more accurate (enhanced description of intramolecular correlation, a better account of exchange effects, relativistic SAPT, and explicitly correlated SAPT), and more efficient (enhanced density‐fitted implementations, linear‐scaling variants, empirical dispersion, and an implementation on graphics processing units). The new developments open up avenues for SAPT applications to an unprecedented variety of weakly interacting complexes. This article is categorized under: Electronic Structure Theory > Ab Initio Electronic Structure Methods Electronic Structure Theory > Density Functional Theory Molecular and Statistical Mechanics > Molecular Interactions Most important concepts reviewed in this work, shaped into a noncovalently interacting complex. Symmetry‐adapted perturbation theory (SAPT) is a well‐established method to compute accurate intermolecular interaction energies in terms of physical effects such as electrostatics, induction (polarization), dispersion, and exchange. With many theory levels and variants, and several computer implementations available, closed‐shell SAPT has been applied to produce numerous intermolecular potential energy surfaces for complexes of experimental interest, and to elucidate the interactions in various complexes relevant to catalysis, organic synthesis, and biochemistry. In contrast, the development of SAPT for general open‐shell complexes is still a work in progress. In the last decade, new developments from several research groups, including the author's, have greatly enhanced the capabilities of SAPT. The new and emerging approaches are designed to make SAPT more widely applicable (including interactions involving multireference systems, complexes in arbitrary spin states, and intramolecular noncovalent interactions), more accurate (enhanced description of intramolecular correlation, a better account of exchange effects, relativistic SAPT, and explicitly correlated SAPT), and more efficient (enhanced density‐fitted implementations, linear‐scaling variants, empirical dispersion, and an implementation on graphics processing units). The new developments open up avenues for SAPT applications to an unprecedented variety of weakly interacting complexes.This article is categorized under:Electronic Structure Theory > Ab Initio Electronic Structure MethodsElectronic Structure Theory > Density Functional TheoryMolecular and Statistical Mechanics > Molecular Interactions |
| Author | Patkowski, Konrad |
| Author_xml | – sequence: 1 givenname: Konrad orcidid: 0000-0002-4468-207X surname: Patkowski fullname: Patkowski, Konrad email: kjp0013@auburn.edu organization: Auburn University |
| BookMark | eNp1kMlOwzAURS1UJErpgj-IxIpFWg9JHC9YoIpJKkJiEEvLsV9EqkzYbqvs-AS-kS8hHcQCwdu8uzj3vqd7jAZ1UwNCpwRPCMZ0utaVm5AopgdoSHgsQpym0eBH8-QIjZ1b4H4iQSgjQ3TxCBpqHxhYQdm0Va9dUNSB66oKvO2-Pj6VUa0HE7Rg_dJmyhdNHfg3aGx3gg5zVToY7_cIvVxfPc9uw_nDzd3sch5qKjgNY64UN0wkWRwxoeOME6A4UsIQw6lOExEDIzpXOEqxAI0NpZTrzOSExSqnbITOdrmtbd6X4LxcNEtb9yclZQITkjCKe2q6o7RtnLOQS1347bveqqKUBMtNTXJTk9zU1DvOfzlaW1TKdn-y-_R1UUL3PyhfZ_dPW8c3hIR64A |
| CitedBy_id | crossref_primary_10_3390_ijms241713324 crossref_primary_10_1016_j_fluid_2021_113236 crossref_primary_10_3390_bioengineering11010051 crossref_primary_10_1021_jacsau_5c00842 crossref_primary_10_1063_5_0216596 crossref_primary_10_1146_annurev_physchem_062422_023532 crossref_primary_10_1007_s11224_022_02053_4 crossref_primary_10_1002_ange_202316364 crossref_primary_10_1002_qua_26266 crossref_primary_10_1002_cplu_202300523 crossref_primary_10_1021_jacs_4c13291 crossref_primary_10_1080_00268976_2025_2540491 crossref_primary_10_3390_molecules29051043 crossref_primary_10_3390_ijms232415773 crossref_primary_10_1021_acs_jpca_5c05103 crossref_primary_10_3390_solids5030023 crossref_primary_10_1002_jcc_26377 crossref_primary_10_1002_anie_202512342 crossref_primary_10_3390_ijms25010602 crossref_primary_10_1002_jcc_27386 crossref_primary_10_1016_j_cej_2024_158989 crossref_primary_10_1002_adma_202402314 crossref_primary_10_1002_ajoc_202400611 crossref_primary_10_1063_5_0219185 crossref_primary_10_1016_j_comptc_2021_113419 crossref_primary_10_1021_acs_chemrev_4c00869 crossref_primary_10_1021_acscentsci_4c00058 crossref_primary_10_3390_ma17112689 crossref_primary_10_1016_j_comptc_2025_115282 crossref_primary_10_1080_00268976_2022_2109526 crossref_primary_10_1007_s11696_023_03022_9 crossref_primary_10_1016_j_jmgm_2021_107835 crossref_primary_10_1016_j_dyepig_2025_112813 crossref_primary_10_3390_ma18051077 crossref_primary_10_1038_s41598_025_10722_7 crossref_primary_10_1002_ange_202512342 crossref_primary_10_1002_jcc_26765 crossref_primary_10_1007_s00894_022_05190_z crossref_primary_10_1021_acs_jcim_5c00617 crossref_primary_10_1016_j_foodres_2025_116763 crossref_primary_10_1002_cphc_202400498 crossref_primary_10_1039_D4TA09136A crossref_primary_10_1021_acsomega_5c07079 crossref_primary_10_1080_17460441_2025_2555271 crossref_primary_10_1016_j_cej_2021_129638 crossref_primary_10_3390_molecules26216719 crossref_primary_10_3390_molecules28114478 crossref_primary_10_1103_PhysRevResearch_6_043021 crossref_primary_10_3390_ijms21217908 crossref_primary_10_3390_ijms241713349 crossref_primary_10_1021_acs_jctc_5c00629 crossref_primary_10_1016_j_cpc_2021_107933 crossref_primary_10_3390_ijms251910762 crossref_primary_10_1016_j_jics_2021_100208 crossref_primary_10_3390_nano12162757 crossref_primary_10_1038_s42004_024_01329_6 crossref_primary_10_1016_j_chemphys_2022_111556 crossref_primary_10_1038_s41598_024_60741_z crossref_primary_10_1080_00268976_2025_2478202 crossref_primary_10_1002_anie_202316364 crossref_primary_10_3390_catal12050561 crossref_primary_10_3390_molecules26113119 crossref_primary_10_1002_cphc_202400608 crossref_primary_10_1016_j_cplett_2025_142348 crossref_primary_10_1002_advs_202414394 crossref_primary_10_1039_D5RA04351D crossref_primary_10_1063_5_0275311 crossref_primary_10_1021_jacs_3c01030 crossref_primary_10_1002_cctc_202100342 crossref_primary_10_1016_j_cej_2022_135053 crossref_primary_10_1088_1361_6463_ad3bc4 crossref_primary_10_1063_5_0039256 crossref_primary_10_3390_ijms25158272 crossref_primary_10_3390_molecules28237900 crossref_primary_10_1007_s11696_022_02500_w crossref_primary_10_1016_j_molliq_2025_128061 |
| Cites_doi | 10.1126/science.1254419 10.1063/1.4929479 10.1063/1.466661 10.1039/c002653k 10.1063/1.1594713 10.1063/1.2712434 10.1063/1.1564816 10.1063/1.4811833 10.1103/PhysRevLett.84.4072 10.1016/0009-2614(94)01402-H 10.1021/jp107557p 10.1002/wcms.1361 10.1039/b804513e 10.1039/C3CP53035C 10.1080/00268976.2013.827253 10.1063/1.3567306 10.1063/1.4812182 10.1021/acs.jctc.7b01053 10.1021/ct401111c 10.1002/qua.560230203 10.1063/1.5001028 10.1016/j.cplett.2009.03.073 10.1063/1.1499488 10.1021/ct400481r 10.1063/1.464179 10.1021/acs.chemrev.6b00446 10.1002/wcms.86 10.1021/ja3063309 10.1021/acs.jctc.8b00034 10.1021/jp064095o 10.1073/pnas.0408475102 10.1063/1.1327260 10.1063/1.470309 10.1016/S0065-3276(08)60214-2 10.1021/jp503182h 10.1103/PhysRevA.53.1316 10.1021/jp412765t 10.1063/1.480567 10.1021/jp073685z 10.1021/acs.jpca.6b12930 10.1002/jcc.24908 10.1002/jcc.26003 10.1002/jcc.540110311 10.1063/1.456069 10.1002/qua.560140306 10.1016/j.cplett.2007.11.014 10.1039/C9CP00422J 10.1103/PhysRevLett.108.236402 10.1021/ct800471b 10.1063/1.3073302 10.1063/1.473831 10.1002/wcms.1168 10.1021/acs.jpca.9b06028 10.1021/acs.jctc.5b00002 10.1063/1.463475 10.1063/1.3300064 10.1021/ct400057w 10.1007/BF01341258 10.1021/jz301015p 10.1021/acs.jctc.6b00141 10.1063/1.470646 10.1021/jp412779q 10.1021/ja304528m 10.1002/qua.560180414 10.1063/1.4986291 10.1039/C3CP55188A 10.1039/c2cp00015f 10.1021/jp511101n 10.1063/1.1445115 10.1039/B415208E 10.1021/ct300200m 10.1080/00268976.2012.746478 10.1021/ct400149j 10.1063/1.4871116 10.1063/1.1461814 10.1063/1.466432 10.1016/S0009-2614(02)01097-7 10.1063/1.4827297 10.1002/jcc.25084 10.1063/1.4813523 10.1063/1.4903765 10.1021/acs.jpcc.7b02128 10.1021/acs.jctc.8b00527 10.1021/ct200185h 10.1021/jp303790r 10.1063/1.2889006 10.1002/qua.560320202 10.1063/1.3656681 10.1002/jcc.21759 10.1063/1.462569 10.1021/acs.jpclett.6b00780 10.1021/acs.jctc.6b00913 10.1021/ja5101245 10.1021/ct500478t 10.1063/1.1542871 10.1063/1.3079541 10.1063/1.5087208 10.1080/00268977900101601 10.1063/1.2409292 10.1063/1.1671609 10.1063/1.4963385 10.1021/acs.chemrev.5b00560 10.1039/b807329e 10.1007/s002140050442 10.1063/1.3426316 10.1063/1.465554 10.1063/1.1676119 10.1063/1.464913 10.1063/1.2784391 10.1021/jp300109y 10.1021/cr200204r 10.1016/j.comptc.2012.05.012 10.1135/cccc20040141 10.1063/1.4997569 10.1021/acs.jctc.6b00969 10.1063/1.467225 10.1103/PhysRevB.37.785 10.1021/acs.jctc.9b00547 10.1063/1.5111869 10.1002/slct.201700671 10.1021/acs.chemrev.5b00644 10.1021/ja204294q 10.1039/C4CP04354E 10.1146/annurev-physchem-040215-112047 10.1021/jp205031e 10.1039/C6CP07475H 10.1021/ar0402006 10.1063/1.2126975 10.1063/1.4936830 10.1039/df9654000007 10.1063/1.452542 10.1016/j.comptc.2017.03.008 10.1016/j.cplett.2007.07.065 10.1002/wcms.82 10.1021/ct5010593 10.1039/C9DT00182D 10.1021/ct500724p 10.1103/PhysRevLett.119.123401 10.1063/1.2968556 10.1080/00268978800100171 10.1021/jp305700k 10.1021/acs.jctc.8b01058 10.1063/1.1589749 10.1063/1.4931809 10.1021/acs.chemrev.5b00526 10.1039/b204199p 10.1080/00268978500102021 10.1007/BF00533487 10.1039/c2cp24060b 10.1063/1.4978951 10.1021/cr00031a008 10.1063/1.478522 10.1021/cr990048z 10.1063/1.447867 10.1063/1.4867969 10.1021/ar400303a 10.1039/b708483h 10.1016/0301-0104(73)80059-X 10.1063/1.4869686 10.1063/1.3451077 10.1021/acs.jpclett.9b01156 10.1039/C8CP05749D 10.1063/1.1924593 10.1016/S0009-2614(99)00515-1 10.1063/1.5030434 10.1002/anie.201409487 10.1039/C4CS00375F 10.1063/1.2173256 10.1080/00268976.2017.1317861 10.1021/acs.jctc.5b00588 10.1002/wcms.1326 10.1021/jp003883p 10.1063/1.2834918 10.1021/ct900108f 10.1103/PhysRevA.70.062505 10.1021/jp208150b 10.1021/acs.jctc.8b00058 10.1039/C0CP00968G 10.1103/RevModPhys.79.291 10.1063/1.470171 10.1063/1.2905808 10.1135/cccc20051109 10.1103/PhysRevLett.101.115503 10.1039/c2cp23949c 10.1002/jcc.24226 10.1002/jcc.23994 10.1021/ja401420w 10.1103/PhysRevA.94.042708 10.1021/ct100182u 10.1002/chem.201802385 10.1063/1.456153 10.1080/00268970110105424 10.1007/s00214-019-2414-5 10.1063/1.3668283 10.1063/1.4907204 10.1021/jp076412c 10.1063/1.4889855 10.1021/ct200106a 10.1063/1.3276460 10.1021/jp4016933 10.1021/acs.chemrev.5b00652 10.1063/1.1311289 10.1039/C8CP04962A 10.1021/ct200673a 10.1063/1.4758455 10.1007/430_004 10.1021/acs.jctc.6b00209 10.1021/cr200168z 10.1021/ct400036b 10.1063/1.4734597 10.1063/1.467218 10.1039/C6CP05030A 10.1103/PhysRevLett.103.263201 10.1002/wcms.8 10.1002/qua.560100211 10.1063/1.4900478 10.1063/1.2936122 10.1021/jz9002444 10.1103/PhysRevA.50.2138 10.1021/jp5098603 10.1007/s00214-010-0748-0 10.1021/acs.jctc.5b01241 10.1063/1.1319649 10.1063/1.5116151 10.1021/ct9005882 10.1063/1.2135288 10.1021/acs.chemrev.5b00648 10.1063/1.1679012 10.1063/1.3159673 10.1063/1.3382344 10.1103/PhysRevLett.121.113402 10.1039/c3cp52312h 10.1080/00268970600673975 10.1063/1.481120 10.1021/jacs.8b07985 10.1103/PhysRevA.49.2421 10.1039/C7CC03116E 10.1021/acs.jpcb.7b03714 10.1021/ct501115m 10.1103/PhysRevLett.77.3865 10.1063/1.4826520 10.1016/S0065-3276(08)60381-0 10.1063/1.439880 10.1021/acs.jctc.7b00851 10.1080/00268970600693395 10.1007/BF00558020 10.1063/1.1383587 10.1063/1.5086079 10.1002/wcms.30 10.1063/1.4927575 10.1021/ja100936w 10.1063/1.2817618 10.1063/1.3479400 10.1021/ct3008809 10.1021/ct200243s 10.1021/jacs.7b02349 10.1063/1.469994 10.1021/acs.jpcb.5b05115 10.1063/1.5021891 10.1103/PhysRevLett.52.997 10.1002/qua.560450502 10.1021/acs.jctc.5b00267 10.1063/1.1476007 10.1016/j.cplett.2005.08.048 10.1039/C4CP03376K 10.1002/chem.201200497 10.1021/cr00031a001 10.1021/ct700167b 10.1063/1.461528 10.1007/s00214-002-0377-3 10.1039/C5CP07281F 10.1002/(SICI)1097-461X(1996)60:1<273::AID-QUA28>3.0.CO;2-E 10.1063/1.2954017 10.1016/S0009-2614(02)01796-7 10.1021/acs.jpcb.6b09489 10.1021/cr200148b 10.1063/1.5075487 10.1063/1.438313 10.1039/b719725j 10.1021/acs.chemmater.5b03266 10.1002/anie.201807751 10.1021/acs.jctc.7b00174 10.1063/1.4867071 10.1016/S0009-2614(89)87395-6 10.1103/PhysRev.73.360 10.1039/C9CP01762C 10.1021/ct500490b 10.1063/1.1723844 10.1021/ja802849j 10.1039/c002656e 10.1080/00268979909483008 10.1063/1.3560026 10.1039/C2CP42810E 10.1016/j.jphotobiol.2018.11.007 10.1063/1.1824898 10.1021/acs.jctc.5b00687 10.1080/01442350110071957 10.1002/qua.560480303 10.1063/1.4883517 10.1016/B978-044451719-7/50076-7 10.1021/jp3108182 10.1063/1.1899143 10.1016/S0009-2614(02)00533-X 10.1002/wcms.1181 10.1002/wcms.1189 10.1063/1.2191500 10.1016/0009-2614(93)87156-W 10.1063/1.441359 10.1016/j.cplett.2005.08.060 10.1021/acs.jctc.6b00155 10.1063/1.3058477 10.1080/00268976.2014.952696 10.1021/ct2002946 10.1063/1.3054300 10.1021/cr00005a013 10.1021/acs.jpca.6b05248 10.1103/RevModPhys.85.693 10.1039/b310529f 10.1063/1.2770721 10.1021/acs.jpca.6b08945 10.1093/acprof:oso/9780199672394.001.0001 10.1002/qua.25379 10.1002/cphc.201600942 10.1021/jp110374b 10.1039/C7CP03665E 10.1021/jz402663k 10.1002/wcms.1297 10.1103/PhysRevA.33.3742 10.1016/0009-2614(81)85452-8 10.1080/01442350601081931 10.1021/acs.jctc.8b00470 10.1002/qua.560100208 10.1063/1.2358353 10.1021/jp960694r 10.1002/wcms.1294 10.1021/jacs.5b04066 10.1007/BFb0016643 10.1002/wcms.1164 10.1021/ct400250u 10.1063/1.2933312 10.1063/1.4986081 10.1063/1.474405 10.1063/1.4800981 10.1016/0009-2614(94)01027-7 10.1063/1.4968529 10.1016/0009-2614(75)80278-8 10.1021/ct900232j 10.1021/ct100686e 10.1021/acs.jpclett.6b02585 10.1063/1.5053802 10.1021/ct200111a 10.1016/S0009-2614(02)00538-9 10.1007/s00894-012-1428-x 10.1063/1.3672810 10.1021/acs.jpcb.6b05328 10.1039/b709192c 10.1103/PhysRevLett.91.033201 10.1021/ct0501093 10.1021/jp900490p 10.1002/wcms.1355 10.1063/1.4927304 10.1063/1.1379330 10.1021/jp209335y 10.1063/1.473556 10.1063/1.1620496 10.1021/acs.chemmater.6b02930 10.1016/j.comptc.2018.02.019 10.1039/C9CS00060G 10.1002/anie.201102982 10.1063/1.2364489 10.1021/ar400326q 10.1021/cr2001383 10.1021/acs.jctc.5b00296 10.1039/B600027D 10.1002/anie.201508056 10.1021/jp8105919 10.1002/chem.200700602 10.1038/nature10367 10.1063/1.1594722 10.1039/C8CP02029A 10.1021/acs.chemrev.5b00577 10.1016/S0166-1280(01)00478-X 10.1063/1.480901 10.1021/ct300778e 10.1021/acs.jctc.6b01198 10.1063/1.5007929 10.1021/ct400704a 10.1002/wcms.84 10.1039/C9CP03015H 10.1063/1.4867135 10.1021/acs.jctc.7b00797 10.1063/1.3176515 10.1021/acs.jctc.6b00523 10.1080/00268979650026262 10.1021/cr200093j 10.1063/1.2733648 10.1021/acsomega.8b01339 10.1063/1.4961095 10.1063/1.2137315 10.1063/1.4893990 10.1002/cphc.201601405 10.1021/jp400051b 10.1021/acs.jctc.7b01233 10.1063/1.477711 10.1016/0009-2614(67)80007-1 10.1039/C6CP03784D 10.1063/1.473860 10.1002/chem.201701031 10.1063/1.3683219 10.1007/s00214-012-1235-6 10.1039/c3cp52768a 10.1063/1.4979993 10.1021/acs.chemrev.5b00533 10.1021/ct050304h 10.1016/0003-4916(74)90333-9 |
| ContentType | Journal Article |
| Copyright | 2019 Wiley Periodicals, Inc. 2020 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: 2019 Wiley Periodicals, Inc. – notice: 2020 Wiley Periodicals, Inc. |
| DBID | AAYXX CITATION 7QH 7TN 7UA C1K F1W H96 JQ2 L.G |
| DOI | 10.1002/wcms.1452 |
| DatabaseName | CrossRef Aqualine Oceanic Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Computer Science Collection Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1759-0884 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_wcms_1452 WCMS1452 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: U.S. National Science Foundation CAREER funderid: CHE‐1351978 |
| GroupedDBID | 05W 0R~ 1OC 1VH 31~ 33P 8-0 8-1 A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-A DCZOG DRFUL DRSTM EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ O66 O9- P2W ROL SUPJJ WBKPD WHWMO WIH WIK WOHZO WVDHM WXSBR WYJ ZZTAW ~S- AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION LH4 7QH 7TN 7UA C1K F1W H96 JQ2 L.G |
| ID | FETCH-LOGICAL-c2972-57aa7d396b5439c5b71e204a9d1d72c8695e31cfa04809ec0d2227cbdf135af23 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 186 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000499677600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1759-0876 |
| IngestDate | Mon Nov 24 18:10:56 EST 2025 Sat Nov 29 02:23:38 EST 2025 Tue Nov 18 21:44:00 EST 2025 Wed Jan 22 16:34:05 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2972-57aa7d396b5439c5b71e204a9d1d72c8695e31cfa04809ec0d2227cbdf135af23 |
| Notes | Funding information U.S. National Science Foundation CAREER, Grant/Award Number: CHE‐1351978 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4468-207X |
| PQID | 2390116320 |
| PQPubID | 2034594 |
| PageCount | 47 |
| ParticipantIDs | proquest_journals_2390116320 crossref_citationtrail_10_1002_wcms_1452 crossref_primary_10_1002_wcms_1452 wiley_primary_10_1002_wcms_1452_WCMS1452 |
| PublicationCentury | 2000 |
| PublicationDate | May/June 2020 2020-05-00 20200501 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: May/June 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
| PublicationTitle | Wiley interdisciplinary reviews. Computational molecular science |
| PublicationYear | 2020 |
| Publisher | Wiley Periodicals, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Periodicals, Inc – name: Wiley Subscription Services, Inc |
| References | 2011; 115 1979; 38 2011; 477 1987; 32 2019; 10 2019; 15 2015; 142 2015; 143 2012; 18 2012; 14 1981; 83 2008; 101 1996; 77 1984; 52 2010; 1 2015; 137 2019; 21 2013; 117 2019; 25 1996; 60 2013; 111 2005; 70 2019; 151 1981; 74 2019; 150 2010; 6 1983; 23 1976; 41 2011; 135 2011; 1 2019; 190 1943; 11 2013; 85 1943; 17 2008; 129 2006; 110 1975; 36 2008; 128 1934; 6 1999; 101 2016; 18 2016; 17 2011; 134 2007; 13 2011; 133 2011; 7 2016; 12 2017; 139 2001; 20 2017; 53 2006; D62 2016; 7 2019; 40 2015; 113 1967; 1 2019; 48 1999; 110 2005; 7 2005; 1 2015; 119 2006; 104 2016; 28 2017; 146 2018; 1129 2017; 147 2012; 998 2008; 130 1973; 2 1996; 88 2017; 119 1964; 1 1990; 11 1989; 157 1986; 33 2004; 69 2002; 117 2002; 357 2002; 116 1996; 100 1992; 97 1979; 71 2017; 115 2017; 117 1992; 96 2001; 105 2013; 19 1994; 100 1987; 86 2014; 5 2013; 15 2014; 4 2003; 91 2004; 70 2017; 38 2002; 100 2003; 5 2016; 116 2002; 108 2017; 121 1985; 55 1994; 229 2007; 26 2006; 125 2006; 124 2007; 126 1948; 73 2007; 127 1969; 50 2010; 127 2017; 23 2005 1978; 14 1995; 233 2016; 120 1996; 53 1980; 18 1993; 99 2007; 111 1993; 98 2017; 13 2010; 132 2010; 133 2017; 19 1995; 103 2017; 18 2009; 5 2013 2008; 450 2001; 115 2001; 114 2018; 57 2010; 12 2010; 11 2006; 39 1991; 95 2009; 473 2016; 145 2009; 113 2001; 547 2007; 79 2014; 136 2013; 9 2018; 8 2012; 131 2018; 39 2018; 3 2012; 134 2016; B72 2005; 102 2010; 114 2014; 16 2007; 9 1991; 91 2007; 3 2012; 136 2012; 137 2014; 10 1993; 48 2007; 445 2019; 9 1993; 45 2000; 113 2005; 116 2015; 54 1997 2014; 47 1997; 28 2002; 4 2016; 94 2000; 112 2018; 20 2012; 108 1965; 40 2012; 112 2002; 362 2005; 122 2005; 123 1973; 28 2000; 84 2014; 140 2000; 100 2014; 141 1994; 94 2012; 116 2009; 103 2018; 14 2017; 7 2004; 120 2015; 36 2018; 121 2003; 119 2017; 2 2003; 118 1993; 208 1993; B 1988; 37 1973; 58 2005; 414 2005; 415 1996; 181 2011; 13 2019; 123 1997; 106 1997; 107 1980; 73 2017; 1116 1974; 82 2015; 44 1999; 96 2003; 367 2014; 118 2015; 17 2018; 140 1984; 81 2018; 149 2015; 11 2018; 148 2006; 8 2011; 32 1994; 49 2008; 10 2009; 130 2009; 131 2006; 2 1999; 307 2016; 55 1976; 10 2012; 2 2012; 3 1930; 60 2013; 138 1989; 90 2013; 139 2011; 50 2019; 138 1998; 109 2013; 135 1988; 63 1994; 50 2014; 345 2016; 67 2012; 8 e_1_2_10_210_1 e_1_2_10_233_1 e_1_2_10_256_1 e_1_2_10_279_1 e_1_2_10_158_1 e_1_2_10_342_1 e_1_2_10_365_1 e_1_2_10_388_1 e_1_2_10_135_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_112_1 e_1_2_10_13_1 Jeziorski B (e_1_2_10_82_1) 1993 e_1_2_10_222_1 e_1_2_10_245_1 e_1_2_10_268_1 e_1_2_10_147_1 e_1_2_10_330_1 e_1_2_10_353_1 e_1_2_10_376_1 e_1_2_10_399_1 e_1_2_10_124_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_101_1 e_1_2_10_211_1 e_1_2_10_257_1 e_1_2_10_234_1 e_1_2_10_341_1 e_1_2_10_159_1 e_1_2_10_90_1 Bistoni G (e_1_2_10_16_1) 2019; 9 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_38_1 e_1_2_10_364_1 e_1_2_10_15_1 e_1_2_10_387_1 e_1_2_10_269_1 e_1_2_10_200_1 e_1_2_10_246_1 e_1_2_10_223_1 e_1_2_10_352_1 e_1_2_10_148_1 e_1_2_10_409_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_49_1 e_1_2_10_375_1 e_1_2_10_26_1 e_1_2_10_398_1 e_1_2_10_190_1 e_1_2_10_258_1 e_1_2_10_235_1 Coupled Korona T. (e_1_2_10_343_1) 2010 e_1_2_10_340_1 e_1_2_10_363_1 e_1_2_10_91_1 e_1_2_10_137_1 e_1_2_10_39_1 e_1_2_10_114_1 e_1_2_10_386_1 e_1_2_10_247_1 e_1_2_10_201_1 e_1_2_10_224_1 e_1_2_10_351_1 e_1_2_10_374_1 e_1_2_10_408_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_103_1 e_1_2_10_397_1 e_1_2_10_236_1 e_1_2_10_259_1 e_1_2_10_213_1 e_1_2_10_385_1 e_1_2_10_419_1 e_1_2_10_362_1 e_1_2_10_92_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_191_1 e_1_2_10_17_1 e_1_2_10_309_1 e_1_2_10_225_1 e_1_2_10_248_1 e_1_2_10_202_1 e_1_2_10_350_1 e_1_2_10_396_1 e_1_2_10_407_1 e_1_2_10_373_1 e_1_2_10_81_1 e_1_2_10_104_1 e_1_2_10_180_1 e_1_2_10_252_1 e_1_2_10_275_1 e_1_2_10_298_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_421_1 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_2_1 e_1_2_10_300_1 e_1_2_10_323_1 e_1_2_10_346_1 e_1_2_10_369_1 e_1_2_10_55_1 e_1_2_10_78_1 e_1_2_10_154_1 e_1_2_10_241_1 e_1_2_10_264_1 e_1_2_10_287_1 e_1_2_10_32_1 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_189_1 e_1_2_10_334_1 e_1_2_10_357_1 e_1_2_10_311_1 e_1_2_10_67_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_253_1 e_1_2_10_299_1 e_1_2_10_22_1 e_1_2_10_230_1 e_1_2_10_420_1 e_1_2_10_276_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_178_1 e_1_2_10_322_1 e_1_2_10_368_1 e_1_2_10_3_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_345_1 e_1_2_10_242_1 e_1_2_10_288_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_265_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_333_1 e_1_2_10_379_1 Reilly AM (e_1_2_10_238_1) 2016; 72 e_1_2_10_310_1 e_1_2_10_68_1 e_1_2_10_356_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_231_1 e_1_2_10_254_1 e_1_2_10_277_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_179_1 e_1_2_10_344_1 e_1_2_10_367_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_220_1 e_1_2_10_289_1 e_1_2_10_11_1 e_1_2_10_243_1 e_1_2_10_266_1 e_1_2_10_145_1 e_1_2_10_168_1 e_1_2_10_332_1 e_1_2_10_355_1 e_1_2_10_378_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_232_1 e_1_2_10_278_1 e_1_2_10_255_1 e_1_2_10_157_1 e_1_2_10_320_1 e_1_2_10_389_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_36_1 e_1_2_10_366_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_59_1 e_1_2_10_221_1 e_1_2_10_267_1 e_1_2_10_244_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_331_1 e_1_2_10_354_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_47_1 e_1_2_10_377_1 e_1_2_10_271_1 e_1_2_10_339_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_294_1 e_1_2_10_402_1 e_1_2_10_207_1 e_1_2_10_380_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_304_1 e_1_2_10_327_1 e_1_2_10_173_1 e_1_2_10_196_1 e_1_2_10_260_1 e_1_2_10_51_1 e_1_2_10_283_1 e_1_2_10_413_1 e_1_2_10_219_1 e_1_2_10_391_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_338_1 e_1_2_10_162_1 e_1_2_10_315_1 e_1_2_10_185_1 e_1_2_10_272_1 e_1_2_10_41_1 e_1_2_10_401_1 e_1_2_10_424_1 e_1_2_10_295_1 e_1_2_10_208_1 e_1_2_10_52_1 e_1_2_10_75_1 e_1_2_10_349_1 e_1_2_10_151_1 e_1_2_10_174_1 e_1_2_10_197_1 e_1_2_10_98_1 e_1_2_10_326_1 e_1_2_10_7_1 e_1_2_10_303_1 e_1_2_10_261_1 e_1_2_10_284_1 e_1_2_10_412_1 e_1_2_10_390_1 e_1_2_10_337_1 e_1_2_10_64_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_186_1 e_1_2_10_87_1 e_1_2_10_314_1 e_1_2_10_250_1 e_1_2_10_273_1 e_1_2_10_42_1 e_1_2_10_400_1 e_1_2_10_423_1 e_1_2_10_296_1 e_1_2_10_209_1 e_1_2_10_4_1 e_1_2_10_348_1 e_1_2_10_53_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_152_1 e_1_2_10_198_1 e_1_2_10_302_1 e_1_2_10_325_1 e_1_2_10_175_1 Szalewicz K (e_1_2_10_84_1) 1997 e_1_2_10_262_1 e_1_2_10_30_1 e_1_2_10_411_1 e_1_2_10_285_1 e_1_2_10_336_1 e_1_2_10_359_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_141_1 e_1_2_10_187_1 e_1_2_10_164_1 e_1_2_10_313_1 e_1_2_10_274_1 e_1_2_10_43_1 e_1_2_10_251_1 e_1_2_10_20_1 e_1_2_10_422_1 e_1_2_10_297_1 e_1_2_10_130_1 e_1_2_10_199_1 Bukowski R (e_1_2_10_425_1) e_1_2_10_301_1 e_1_2_10_347_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_77_1 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_324_1 e_1_2_10_263_1 e_1_2_10_240_1 e_1_2_10_31_1 Fermi E (e_1_2_10_127_1) 1934; 6 e_1_2_10_410_1 e_1_2_10_286_1 e_1_2_10_188_1 e_1_2_10_312_1 e_1_2_10_335_1 e_1_2_10_358_1 e_1_2_10_66_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_89_1 e_1_2_10_214_1 e_1_2_10_237_1 e_1_2_10_290_1 e_1_2_10_361_1 e_1_2_10_384_1 e_1_2_10_418_1 Li X (e_1_2_10_212_1) 2006; 62 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_116_1 e_1_2_10_192_1 e_1_2_10_308_1 e_1_2_10_203_1 e_1_2_10_226_1 e_1_2_10_249_1 e_1_2_10_372_1 e_1_2_10_395_1 e_1_2_10_406_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_105_1 e_1_2_10_181_1 e_1_2_10_319_1 e_1_2_10_215_1 e_1_2_10_291_1 e_1_2_10_417_1 e_1_2_10_360_1 e_1_2_10_383_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_193_1 e_1_2_10_94_1 e_1_2_10_19_1 e_1_2_10_307_1 e_1_2_10_204_1 e_1_2_10_280_1 e_1_2_10_227_1 e_1_2_10_405_1 e_1_2_10_371_1 e_1_2_10_394_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_182_1 e_1_2_10_83_1 e_1_2_10_318_1 Muto Y (e_1_2_10_321_1) 1943; 17 e_1_2_10_239_1 e_1_2_10_292_1 e_1_2_10_216_1 e_1_2_10_404_1 e_1_2_10_416_1 e_1_2_10_382_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_194_1 e_1_2_10_171_1 e_1_2_10_8_1 e_1_2_10_306_1 e_1_2_10_329_1 e_1_2_10_119_1 e_1_2_10_205_1 e_1_2_10_228_1 e_1_2_10_281_1 e_1_2_10_415_1 Patkowski K (e_1_2_10_28_1) 2017 e_1_2_10_393_1 e_1_2_10_370_1 e_1_2_10_61_1 e_1_2_10_107_1 e_1_2_10_183_1 e_1_2_10_160_1 e_1_2_10_317_1 e_1_2_10_270_1 e_1_2_10_108_1 e_1_2_10_217_1 e_1_2_10_293_1 e_1_2_10_403_1 e_1_2_10_426_1 e_1_2_10_229_1 e_1_2_10_381_1 e_1_2_10_73_1 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_305_1 e_1_2_10_195_1 e_1_2_10_9_1 e_1_2_10_328_1 e_1_2_10_50_1 e_1_2_10_206_1 e_1_2_10_282_1 e_1_2_10_414_1 e_1_2_10_218_1 e_1_2_10_392_1 e_1_2_10_62_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_316_1 e_1_2_10_184_1 |
| References_xml | – volume: 117 start-page: 4714 year: 2017 end-page: 4758 article-title: First‐principles models for van der Waals interactions in molecules and materials: Concepts, theory, and applications publication-title: Chem Rev – volume: 9 start-page: 2687 year: 2013 end-page: 2696 article-title: Accuracy and efficiency of coupled‐cluster theory using density fitting/Cholesky decomposition, frozen natural orbitals, and a ‐transformed Hamiltonian publication-title: J Chem Theory Comput – volume: 10 start-page: 2735 year: 2008 end-page: 2746 article-title: Physical origins of interactions in dimers of polycyclic aromatic hydrocarbons publication-title: Phys Chem Chem Phys – volume: 98 start-page: 5648 year: 1993 end-page: 5652 article-title: Density‐functional thermochemistry. 3. The role of exact exchange publication-title: J Chem Phys – volume: 150 year: 2019 article-title: Spin splittings from first‐order symmetry‐adapted perturbation theory without single‐exchange approximation publication-title: J Chem Phys – volume: 147 start-page: 161727 year: 2017 article-title: The BioFragment Database (BFDb): An open‐data platform for computational chemistry analysis of noncovalent interactions publication-title: J Chem Phys – volume: 17 start-page: 629 year: 1943 article-title: Force between nonpolar molecules publication-title: Proc Phys Math Soc Jpn – volume: 13 start-page: 3185 year: 2017 end-page: 3197 article-title: Psi4 1.1: An open‐source electronic structure program emphasizing automation, advanced libraries, and interoperability publication-title: J Chem Theory Comput – volume: 139 year: 2013 article-title: On asymptotic behavior of density functional theory publication-title: J Chem Phys – volume: 13 start-page: 732 year: 2011 end-page: 743 article-title: On the accuracy of DFT‐SAPT, MP2, SCS‐MP2, MP2C, and DFT+Disp methods for the interaction energies of endohedral complexes of the C fullerene with a rare gas atom publication-title: Phys Chem Chem Phys – volume: 19 start-page: 26787 year: 2017 end-page: 26798 article-title: A theoretical study of complexes between fullerenes and concave receptors with interest in photovoltaics publication-title: Phys Chem Chem Phys – volume: 139 year: 2013 article-title: An improved treatment of empirical dispersion and a many‐body energy decomposition scheme for the explicit polarization plus symmetry‐adapted perturbation Theory (XSAPT) method publication-title: J Chem Phys – volume: 23 start-page: 341 year: 1983 end-page: 363 article-title: Towards a “chemical” Hamiltonian publication-title: Int J Quantum Chem – volume: 148 start-page: 164110 year: 2018 article-title: First‐order symmetry‐adapted perturbation theory for multiplet splittings publication-title: J Chem Phys – volume: 125 start-page: 234109 year: 2006 article-title: Assessment of a long‐range corrected hybrid functional publication-title: J Chem Phys – volume: 357 start-page: 301 year: 2002 end-page: 306 article-title: Intermolecular forces from asymptotically corrected density functional description of monomers publication-title: Chem Phys Lett – volume: 13 start-page: 1638 year: 2017 end-page: 1646 article-title: Empirical D3 dispersion as a replacement for ab initio dispersion terms in density functional theory‐based symmetry‐adapted perturbation theory publication-title: J Chem Theory Comput – volume: 14 start-page: 271 year: 1978 end-page: 287 article-title: Symmetry forcing and convergence properties of perturbation expansions for molecular interaction energies publication-title: Int J Quantum Chem – volume: 18 start-page: 26057 year: 2016 end-page: 26068 article-title: Chiral recognition by fullerenes: CHFClBr enantiomers in the C cage publication-title: Phys Chem Chem Phys – volume: 50 start-page: 7847 year: 2011 end-page: 7849 article-title: Taking the aromaticity out of aromatic interactions publication-title: Angew Chem Int Ed – volume: 146 start-page: 120901 year: 2017 article-title: Perspective: Found in translation: Quantum chemical tools for grasping noncovalent interactions publication-title: J Chem Phys – volume: 139 start-page: 6550 year: 2017 end-page: 6553 article-title: Measurement of solvent OH‐ interactions using a molecular balance publication-title: J Am Chem Soc – volume: 9 start-page: 5561 year: 2007 end-page: 5569 article-title: Potential energy surface for cyclotrimethylene trinitramine dimer from symmetry‐adapted perturbation theory publication-title: Phys Chem Chem Phys – volume: 123 start-page: 214103 year: 2005 article-title: Intermolecular potentials based on symmetry‐adapted perturbation theory including dispersion energies from time‐dependent density functional calculations publication-title: J Chem Phys – volume: 98 start-page: 2481 year: 1993 end-page: 2483 article-title: On the use of bond functions in molecular calculations publication-title: J Chem Phys – volume: 307 start-page: 265 year: 1999 end-page: 271 article-title: Accurate static polarizabilities by density functional theory: Assessment of the PBE0 model publication-title: Chem Phys Lett – volume: 28 start-page: 3 year: 2016 end-page: 16 article-title: Noncovalent intermolecular interactions in organic electronic materials: Implications for the molecular packing vs electronic properties of acenes publication-title: Chem Mater – volume: 121 start-page: 208 year: 2017 end-page: 220 article-title: Modeling carbon dioxide vibrational frequencies in ionic liquids: I. Ab initio calculations publication-title: J Phys Chem B – volume: 10 start-page: 49 year: 2014 end-page: 57 article-title: Comparing counterpoise‐corrected, uncorrected, and averaged binding energies for benchmarking noncovalent interactions publication-title: J Chem Theory Comput – volume: 36 start-page: 1763 year: 2015 end-page: 1771 article-title: Benchmark calculations of the adsorption of aromatic molecules on graphene publication-title: J Comput Chem – volume: 48 start-page: 6328 year: 2019 end-page: 6332 article-title: Strong stacking interactions of metal‐chelate rings are caused by substantial electrostatic component publication-title: Dalton Trans – volume: 14 start-page: 7679 year: 2012 end-page: 7699 article-title: Rapid computation of intermolecular interactions in molecular and ionic clusters: Self‐consistent polarization plus symmetry‐adapted perturbation theory publication-title: Phys Chem Chem Phys – volume: 28 start-page: 235 year: 1973 end-page: 239 article-title: On asymptotic calculation of the exchange interaction publication-title: Theor Chim Acta – volume: 7 start-page: 1476 year: 2011 end-page: 1483 article-title: Small molecules in C and C : Which complexes could be stabilized? publication-title: J Chem Theory Comput – volume: 122 start-page: 214109 year: 2005 article-title: Symmetry‐adapted perturbation theory calculations of intermolecular forces employing density functional description of monomers publication-title: J Chem Phys – volume: 17 start-page: 6423 year: 2015 end-page: 6432 article-title: Choosing a density functional for modeling adsorptive hydrogen storage: Reference quantum mechanical calculations and a comparison of dispersion‐corrected density functionals publication-title: Phys Chem Chem Phys – volume: 94 start-page: 1887 year: 1994 end-page: 1930 article-title: Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes publication-title: Chem Rev – volume: 53 start-page: 1316 year: 1996 end-page: 1322 article-title: Determination of frequency‐dependent polarizabilities using current density‐functional theory publication-title: Phys Rev A – volume: 5 start-page: 1585 year: 2009 end-page: 1596 article-title: Symmetry‐adapted perturbation theory applied to endohedral fullerene complexes: A stability study of H @ C and 2H @ C publication-title: J Chem Theory Comput – volume: 36 start-page: 451 year: 1975 end-page: 456 article-title: Simple but reliable method for prediction of intermolecular potentials publication-title: Chem Phys Lett – volume: 112 start-page: 321 year: 2012 end-page: 370 article-title: Constrained density functional theory publication-title: Chem Rev – volume: 13 start-page: 3 year: 2017 end-page: 91 – year: 2013 – volume: 25 start-page: 400 year: 2019 end-page: 416 article-title: Pancake bonding: An unusual Pi‐stacking interaction publication-title: Chem A Eur J – volume: 14 start-page: 5128 year: 2018 end-page: 5142 article-title: A simple correction for nonadditive dispersion within extended symmetry‐adapted perturbation theory (XSAPT) publication-title: J Chem Theory Comput – volume: 37 start-page: 785 year: 1988 end-page: 789 article-title: Development of the Colle‐Salvetti correlation‐energy formula into a functional of the electron density publication-title: Phys Rev B – volume: 127 start-page: 124303 year: 2007 article-title: Pair potential for helium from symmetry‐adapted perturbation theory calculations and from supermolecular data publication-title: J Chem Phys – volume: 106 start-page: 9668 year: 1997 end-page: 9687 article-title: Symmetry‐adapted perturbation theory of three‐body nonadditivity of intermolecular interaction energy publication-title: J Chem Phys – volume: 150 start-page: 074302 year: 2019 article-title: Theoretical study of the complexes of dichlorobenzene isomers with argon. II SAPT analysis of the intermolecular interaction publication-title: J Chem Phys – volume: 113 start-page: 184 year: 2015 end-page: 215 article-title: Advances in molecular quantum chemistry contained in the Q‐Chem 4 program package publication-title: Mol Phys – volume: 21 start-page: 6160 year: 2019 end-page: 6170 article-title: A comparison between hydrogen and halogen bonding: The hypohalous acid‐water dimers, HOX⋯H O (X = F, Cl, Br) publication-title: Phys Chem Chem Phys – volume: 141 start-page: 174309 year: 2014 article-title: The interaction of OH(X Π) with H : potential energy surfaces and bound states publication-title: J Chem Phys – volume: 116 start-page: 11920 year: 2012 end-page: 11926 article-title: Buckyplates and Buckybowls: Examining the effects of curvature on ‐ interactions publication-title: J Phys Chem A – volume: 99 start-page: 8856 year: 1993 end-page: 8869 article-title: Many‐body perturbation theory of electrostatic interactions between molecules: Comparison with full configuration interaction for four‐electron dimers publication-title: J Chem Phys – volume: 11 start-page: 299 year: 1943 end-page: 300 article-title: Interaction of the van der Waals type between three atoms publication-title: J Chem Phys – volume: 20 start-page: 28840 year: 2018 end-page: 28847 article-title: The non‐covalently bound SO⋯H O system, including an interpretation of the differences between SO⋯H O and O ⋯H O publication-title: Phys Chem Chem Phys – volume: 233 start-page: 134 year: 1995 end-page: 137 article-title: A density‐functional study of van der Waals forces: Rare gas diatomics publication-title: Chem Phys Lett – volume: 190 start-page: 110 year: 2019 end-page: 117 article-title: Revealing structural involvement of chromophores in algal light harvesting complexes using symmetry‐adapted perturbation theory publication-title: J Photochem Photobiol B: Biol – volume: 85 start-page: 693 year: 2013 end-page: 749 article-title: Theory and application of explicitly correlated Gaussians publication-title: Rev Mod Phys – volume: 1 start-page: 1096 year: 2005 end-page: 1109 article-title: Interacting quantum atoms: A correlated energy decomposition scheme based on the quantum theory of atoms in molecules publication-title: J Chem Theory Comput – volume: 119 start-page: 235 year: 2015 end-page: 252 article-title: Accurate and efficient quantum chemistry calculations for noncovalent interactions in many‐body systems: The XSAPT family of methods publication-title: J Phys Chem A – volume: 128 start-page: 224104 year: 2008 article-title: First‐order exchange energy of intermolecular interactions from coupled cluster density matrices and their cumulants publication-title: J Chem Phys – volume: 115 start-page: 14659 year: 2011 end-page: 14667 article-title: Nature of hydrogen bonding in charged hydrogen‐bonded complexes and imidazolium‐based ionic liquids publication-title: J Phys Chem B – volume: 121 start-page: 1531 year: 2017 end-page: 1534 article-title: Natural bond orbitals and the nature of the hydrogen bond publication-title: J Phys Chem A – volume: 3 start-page: 1890 year: 2007 end-page: 1900 article-title: Design of a next generation force field: The X‐POL potential publication-title: J Chem Theory Comput – volume: 94 start-page: 1723 year: 1994 end-page: 1765 article-title: Origins of structure and energetics of van der Waals clusters from ab‐initio calculations publication-title: Chem Rev – volume: 116 start-page: 5105 year: 2016 end-page: 5154 article-title: Dispersion‐corrected mean‐field electronic structure methods publication-title: Chem Rev – volume: 415 start-page: 100 year: 2005 end-page: 105 article-title: Hybrid functional with separated range publication-title: Chem Phys Lett – volume: 12 start-page: 2569 year: 2016 end-page: 2582 article-title: Energy decomposition analysis with a stable charge‐transfer term for interpreting intermolecular interactions publication-title: J Chem Theory Comput – volume: 21 start-page: 6453 year: 2019 end-page: 6466 article-title: Substituent effects in the so‐called cation⋯ interaction of benzene and its boron‐nitrogen doped analogues: Overlooked role of ‐skeleton publication-title: Phys Chem Chem Phys – volume: 136 year: 2012 article-title: Many‐body effects are essential in a physically motivated CO force field publication-title: J Chem Phys – volume: 119 start-page: 11748 year: 2015 end-page: 11759 article-title: Physical absorption of CO in protic and aprotic ionic liquids: An interaction perspective publication-title: J Phys Chem B – volume: 126 start-page: 194101 year: 2007 article-title: Three‐body symmetry‐adapted perturbation theory based on Kohn‐Sham description of the monomers publication-title: J Chem Phys – volume: 8 start-page: 4989 year: 2012 end-page: 5007 article-title: A density functional with spherical atom dispersion terms publication-title: J Chem Theory Comput – volume: 7 start-page: 825 year: 2011 end-page: 829 article-title: Can electron‐rich systems bind anions? publication-title: J Chem Theory Comput – volume: 108 start-page: 225 year: 2002 end-page: 231 article-title: Two new symmetry‐adapted perturbation theories for the calculation of intermolecular interaction energies publication-title: Theor Chem Acc – volume: 73 start-page: 360 year: 1948 end-page: 372 article-title: The influence of retardation on the London‐van der Waals forces publication-title: Phys Rev – volume: 127 start-page: 221106 year: 2007 article-title: A simple and efficient CCSD(T)‐F12 approximation publication-title: J Chem Phys – volume: 9 year: 2019 article-title: Finding chemical concepts in the Hilbert space: Coupled cluster analyses of noncovalent interactions publication-title: WIREs Comput Mol Sci – volume: 9 start-page: 3364 year: 2013 end-page: 3374 article-title: Accuracy of quantum chemical methods for large noncovalent complexes publication-title: J Chem Theory Comput – volume: 17 start-page: 3863 year: 2016 end-page: 3874 article-title: On the stability of cyclophane derivates using a molecular fragmentation method publication-title: ChemPhysChem – volume: 44 start-page: 3177 year: 2015 end-page: 3211 article-title: Energy decomposition analysis approaches and their evaluation on prototypical protein‐drug interaction patterns publication-title: Chem Soc Rev – volume: 6 start-page: 168 year: 2010 end-page: 178 article-title: Accurate intermolecular interaction energies from a combination of MP2 and TDDFT response theory publication-title: J Chem Theory Comput – volume: 116 start-page: 7501 year: 2016 end-page: 7528 article-title: Modeling molecular interactions in water: From pairwise to many‐body potential energy functions publication-title: Chem Rev – volume: 114 start-page: 12739 year: 2010 end-page: 12754 article-title: Noncovalent interactions in extended systems described by the effective fragment potential method: Theory and application to nucleobase oligomers publication-title: J Phys Chem A – volume: 140 start-page: 16370 year: 2018 end-page: 16386 article-title: Read between the molecules: Computational insights into organic semiconductors publication-title: J Am Chem Soc – volume: 7 year: 2017 article-title: Generalized energy‐based fragmentation approach for modeling condensed phase systems publication-title: WIREs Comput Mol Sci – volume: 112 start-page: 4 year: 2012 end-page: 74 article-title: Explicitly correlated electrons in molecules publication-title: Chem Rev – volume: 104 start-page: 2241 year: 2006 end-page: 2262 article-title: Portable parallel implementation of symmetry‐adapted perturbation theory code publication-title: Mol Phys – volume: 181 start-page: 81 year: 1996 end-page: 172 – volume: 2 start-page: 304 year: 2012 end-page: 326 article-title: Wavefunction methods for noncovalent interactions publication-title: WIREs Comput Mol Sci – volume: 60 start-page: 273 year: 1996 end-page: 285 article-title: On the limits of validity of the symmetrized Rayleigh‐Schrödinger perturbation theory publication-title: Int J Quantum Chem – volume: 100 start-page: 1312 year: 1994 end-page: 1325 article-title: Many‐body theory of exchange effects in intermolecular interactions. Second‐quantization approach and comparison with full configuration interaction results publication-title: J Chem Phys – volume: 55 start-page: 912 year: 2016 end-page: 916 article-title: Can dispersion forces govern aromatic stacking in an organic solvent? publication-title: Angew Chem Int Ed – volume: 13 start-page: 7731 year: 2007 end-page: 7744 article-title: The concept of protobranching and its many paradigm shifting implications for energy evaluations publication-title: Chem A Eur J – volume: 116 start-page: 3042 year: 2012 end-page: 3047 article-title: Breakdown of the single‐exchange approximation in third‐order symmetry‐adapted perturbation theory publication-title: J Phys Chem A – volume: 117 start-page: 3243 year: 2013 end-page: 3251 article-title: Complexes between dihydrogen and amine, phosphine, and arsine derivatives. Hydrogen bond versus pnictogen interaction publication-title: J Phys Chem A – volume: 119 start-page: 4607 year: 2003 end-page: 4613 article-title: Density fitting in second‐order linear‐R12 Møller‐Plesset perturbation theory publication-title: J Chem Phys – volume: 50 start-page: 2138 year: 1994 end-page: 2142 article-title: From electron densities to Kohn‐Sham kinetic energies, orbital energies, exchange‐correlation potentials, and exchange‐correlation energies publication-title: Phys Rev A – volume: 131 start-page: 1235 year: 2012 article-title: Intermolecular exchange‐induction energies without overlap expansion publication-title: Theor Chem Acc – volume: 112 start-page: 112 year: 2000 end-page: 121 article-title: Perturbation theory of three‐body exchange nonadditivity and application to helium trimer publication-title: J Chem Phys – volume: 151 year: 2019 article-title: Platinum, gold, and silver standards of intermolecular interaction energy calculations publication-title: J Chem Phys – volume: 130 start-page: 104303 year: 2009 article-title: The water‐nitric oxide intermolecular potential‐energy surface revisited publication-title: J Chem Phys – volume: 104 start-page: 2303 year: 2006 end-page: 2316 article-title: Time‐independent coupled cluster theory of the polarization propagator. Implementation and application of the singles and doubles model to dynamic polarizabilities and van der Waals constants publication-title: Mol Phys – volume: 208 start-page: 359 year: 1993 end-page: 363 article-title: Use of approximate integrals in ab initio theory. An application in MP2 energy calculations publication-title: Chem Phys Lett – volume: 133 start-page: 13244 year: 2011 end-page: 13247 article-title: Origin of the surprising enhancement of electrostatic energies by electron‐donating substituents in substituted sandwich benzene dimers publication-title: J Am Chem Soc – volume: 117 year: 2017 article-title: On the role of substituent in noncovalent functionalization of graphene and organophosphor recognition: IQA and SAPT perspective publication-title: Int J Quantum Chem – volume: 18 start-page: 23067 year: 2016 end-page: 23079 article-title: Probing non‐covalent interactions with a second generation energy decomposition analysis using absolutely localized molecular orbitals publication-title: Phys Chem Chem Phys – volume: 116 start-page: 5614 year: 2016 end-page: 5641 article-title: Experimental and theoretical determination of dissociation energies of dispersion‐dominated aromatic molecular complexes publication-title: Chem Rev – volume: B start-page: 79 year: 1993 – volume: 90 start-page: 1752 year: 1989 end-page: 1766 article-title: Analytic energy derivatives in many‐body methods. I First derivatives publication-title: J Chem Phys – volume: 140 year: 2014 article-title: Noncovalent ⋯ interaction between graphene and aromatic molecule: Structure, energy, and nature publication-title: J Chem Phys – volume: 121 start-page: 113402 year: 2018 article-title: Do semilocal density‐functional approximations recover dispersion energies at small intermonomer separations? publication-title: Phys Rev Lett – volume: 473 start-page: 201 year: 2009 end-page: 205 article-title: Charge‐transfer in symmetry‐adapted perturbation theory publication-title: Chem Phys Lett – volume: 20 start-page: 18241 year: 2018 end-page: 18251 article-title: Analysis of transition state stabilization by non‐covalent interactions in organocatalysis: Application of atomic and functional‐group partitioned symmetry‐adapted perturbation theory to the addition of organoboron reagents to fluoroketones publication-title: Phys Chem Chem Phys – volume: 70 start-page: 1109 year: 2005 end-page: 1132 article-title: Time‐independent coupled‐cluster theory of the polarization propagator publication-title: Collect Czech Chem Commun – volume: 14 start-page: 1737 year: 2018 end-page: 1753 article-title: Large‐scale functional group symmetry‐adapted perturbation theory on graphical processing units publication-title: J Chem Theory Comput – volume: 10 start-page: 2706 year: 2019 end-page: 2714 article-title: Accurate and efficient calculations for supramolecular complexes: Symmetry‐adapted perturbation theory with many‐body dispersion publication-title: J Phys Chem Lett – volume: 1 start-page: 325 year: 1967 end-page: 329 article-title: Perturbation theory for exchange forces, I publication-title: Chem Phys Lett – volume: 12 start-page: 4184 year: 2016 end-page: 4208 article-title: Ab initio atom‐atom potentials using CamCASP: Theory and application to many‐body models for the pyridine dimer publication-title: J Chem Theory Comput – volume: 142 start-page: 064102 year: 2015 article-title: Does DFT‐SAPT method provide spectroscopic accuracy? publication-title: J Chem Phys – volume: 41 start-page: 7 year: 1976 end-page: 15 article-title: Convergence properties of the intermolecular force series (1/ ‐expansion) publication-title: Theor Chim Acta – volume: 67 start-page: 467 year: 2016 end-page: 488 article-title: Next‐generation force fields from symmetry‐adapted perturbation theory publication-title: Annu Rev Phys Chem – volume: 7 start-page: 59 year: 2005 end-page: 66 article-title: Optimization of auxiliary basis sets for RI‐MP2 and RI‐CC2 calculations: Core‐valence and quintuple‐zeta basis sets for H to Ar and QZVPP basis sets for Li to Kr publication-title: Phys Chem Chem Phys – volume: 36 start-page: 2412 year: 2015 end-page: 2428 article-title: Interplay between tetrel and triel bonds in RC H CN⋯MF CN⋯BX complexes: A combined symmetry‐adapted perturbation theory, Møller‐Plesset, and quantum theory of atoms‐in‐molecules study publication-title: J Comput Chem – volume: 12 start-page: 3851 year: 2016 end-page: 3870 article-title: Beyond Born‐Mayer: Improved models for short‐range repulsion in ab initio force fields publication-title: J Chem Theory Comput – volume: 137 year: 2012 article-title: On the accuracy of explicitly correlated coupled‐cluster interaction energies—Have orbital results been beaten yet? publication-title: J Chem Phys – volume: 141 year: 2014 article-title: Spatial assignment of symmetry adapted perturbation theory interaction energy components: The atomic SAPT partition publication-title: J Chem Phys – volume: 115 start-page: 5955 year: 2011 end-page: 5964 article-title: Evaluation of theoretical approaches for describing the interaction of water with linear Acenes publication-title: J Phys Chem A – volume: 115 start-page: 3540 year: 2001 end-page: 3544 article-title: A long‐range correction scheme for generalized‐gradient‐approximation exchange functionals publication-title: J Chem Phys – volume: 116 start-page: 1892 year: 2012 end-page: 1903 article-title: Ab initio, physically motivated force fields for CO adsorption in zeolitic imidazolate frameworks publication-title: J Phys Chem C – volume: 112 start-page: 403 year: 2012 end-page: 480 article-title: Relativistic pseudopotentials: Their development and scope of applications publication-title: Chem Rev – volume: 18 start-page: 1071 year: 1980 end-page: 1089 article-title: Degenerate symmetry‐adapted perturbation theory. Convergence properties of perturbation expansions for excited states of H ion publication-title: Int J Quantum Chem – volume: 14 start-page: 5105 year: 2018 end-page: 5117 article-title: Dispersion energy of symmetry‐adapted perturbation theory from the explicitly correlated F12 approach publication-title: J Chem Theory Comput – volume: 150 year: 2019 article-title: Understanding non‐covalent interactions in larger molecular complexes from first principles publication-title: J Chem Phys – volume: 123 start-page: 241102 year: 2005 article-title: Quasirelativistic theory equivalent to fully relativistic theory publication-title: J Chem Phys – volume: 116 start-page: 5188 year: 2016 end-page: 5215 article-title: Noncovalent interactions by quantum Monte Carlo publication-title: Chem Rev – volume: 47 start-page: 3321 year: 2014 end-page: 3330 article-title: Density functional theory based study of molecular interactions, recognition, engineering, and quantum transport in molecular systems publication-title: Acc Chem Res – volume: 132 start-page: 154104 year: 2010 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT‐D) for the 94 elements H‐Pu publication-title: J Chem Phys – volume: 136 start-page: 17386 year: 2014 end-page: 17389 article-title: Quantum‐mechanical evaluation of ‐ versus substituent‐ interactions in stacking: Direct evidence for the Wheeler‐Houk picture publication-title: J Am Chem Soc – volume: 124 start-page: 104101 year: 2006 article-title: Towards a force field based on density fitting publication-title: J Chem Phys – volume: 4 start-page: 199 year: 2014 end-page: 224 article-title: Wavefunction methods for the accurate characterization of water clusters publication-title: WIREs Comput Mol Sci – volume: 95 start-page: 6579 year: 1991 end-page: 6601 article-title: Many‐body symmetry‐adapted perturbation theory of intermolecular interactions—H O and HF dimers publication-title: J Chem Phys – volume: 132 start-page: 184111 year: 2010 article-title: Density fitting and Cholesky decomposition approximations in symmetry‐adapted perturbation theory: Implementation and application to probe the nature of pi‐pi interactions in linear acenes publication-title: J Chem Phys – volume: 113 start-page: 3555 year: 2009 end-page: 3559 article-title: CCSD(T) complete basis set limit relative energies for low‐lying water hexamer structures publication-title: J Phys Chem A – volume: 123 start-page: 161103 year: 2005 article-title: Exchange‐correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions publication-title: J Chem Phys – volume: 53 start-page: 6140 year: 2017 end-page: 6143 article-title: Size‐dependent conformational change in halogen‐ interaction: From benzene to graphene publication-title: Chem Commun – volume: 128 start-page: 144107 year: 2008 article-title: Dispersion energy from density‐fitted density susceptibilities of singles and doubles coupled cluster theory publication-title: J Chem Phys – volume: 12 start-page: 8219 year: 2010 end-page: 8240 article-title: Vibration‐rotation‐tunneling states of the benzene dimer: An ab initio study publication-title: Phys Chem Chem Phys – volume: 125 start-page: 184109 year: 2006 article-title: One‐electron properties and electrostatic interaction energies from the expectation value expression and wave function of singles and doubles coupled cluster theory publication-title: J Chem Phys – volume: 11 start-page: 932 year: 2015 end-page: 939 article-title: Accurate treatment of large supramolecular complexes by double‐hybrid density functionals coupled with nonlocal van der Waals corrections publication-title: J Chem Theory Comput – volume: 140 start-page: 154107 year: 2014 article-title: Exploration of zeroth‐order wavefunctions and energies as a first step toward intramolecular symmetry‐adapted perturbation theory publication-title: J Chem Phys – volume: 8 start-page: 1963 year: 2012 end-page: 1969 article-title: Efficient calculations of dispersion energies for nanoscale systems from coupled density response functions publication-title: J Chem Theory Comput – volume: 147 start-page: 181101 year: 2017 article-title: Communication: Symmetry‐adapted perturbation theory with intermolecular induction and dispersion energies from the Bethe‐Salpeter equation publication-title: J Chem Phys – volume: 23 start-page: 7887 year: 2017 end-page: 7890 article-title: The surprising importance of peptide bond contacts in drug‐protein interactions publication-title: Chem A Eur J – volume: 40 start-page: 2248 year: 2019 end-page: 2283 article-title: Nine questions on energy decomposition analysis publication-title: J Comput Chem – volume: 131 year: 2009 article-title: Energy decomposition analysis of covalent bonds and intermolecular interactions publication-title: J Chem Phys – volume: 10 start-page: 1563 year: 2014 end-page: 1575 article-title: Quantum mechanical calculation of noncovalent interactions: A large‐scale evaluation of PMx, DFT, and SAPT approaches publication-title: J Chem Theory Comput – volume: 119 start-page: 1388 year: 2015 end-page: 1395 article-title: Chalcogen and pnicogen bonds in complexes of neutral icosahedral and bicapped square‐antiprismatic heteroboranes publication-title: J Phys Chem A – volume: 8 year: 2018 article-title: Advanced models for water simulations publication-title: WIREs Comput Mol Sci – volume: 47 start-page: 3217 year: 2014 end-page: 3224 article-title: Minimizing density functional failures for non‐covalent interactions beyond van der Waals complexes publication-title: Acc Chem Res – volume: 120 start-page: 6849 year: 2004 end-page: 6862 article-title: Unified treatment of chemical and van der Waals forces via symmetry‐adapted perturbation expansion publication-title: J Chem Phys – volume: 138 start-page: 154101 year: 2013 article-title: Basis set converged weak interaction energies from conventional and explicitly correlated coupled‐cluster approach publication-title: J Chem Phys – volume: 146 start-page: 174108 year: 2017 article-title: SparseMaps‐A systematic infrastructure for reduced scaling electronic structure methods. V Linear scaling explicitly correlated coupled‐cluster method with pair natural orbitals publication-title: J Chem Phys – volume: 39 start-page: 83 year: 2006 end-page: 91 article-title: Spin‐flip equation‐of‐motion coupled‐cluster electronic structure method for a description of excited states, bond breaking, diradicals, and triradicals publication-title: Acc Chem Res – volume: 74 start-page: 2384 year: 1981 end-page: 2396 article-title: The complete active space SCF (CASSCF) method in a Newton‐Raphson formulation with application to the HNO molecule publication-title: J Chem Phys – volume: 12 start-page: 4778 year: 2016 end-page: 4792 article-title: Decomposition of intermolecular interaction energies within the local pair natural orbital coupled cluster framework publication-title: J Chem Theory Comput – volume: 143 start-page: 154106 year: 2015 article-title: Exchange splitting of the interaction energy and the multipole expansion of the wave function publication-title: J Chem Phys – volume: 111 start-page: 3705 year: 2013 end-page: 3715 article-title: A coupled cluster treatment of intramonomer electron correlation within symmetry‐adapted perturbation theory: Benchmark calculations and a comparison with a density‐functional theory description publication-title: Mol Phys – volume: 11 start-page: 2473 year: 2015 end-page: 2486 article-title: Accurate description of intermolecular interactions involving ions using symmetry‐adapted perturbation theory publication-title: J Chem Theory Comput – volume: 138 start-page: 25 year: 2019 article-title: Evaluation of methods for obtaining dispersion energies used in density functional calculations of intermolecular interactions publication-title: Theor Chem Acc – volume: 4 start-page: 127 year: 2014 end-page: 144 article-title: Symmetry‐adapted perturbation theory based on density functional theory for noncovalent interactions publication-title: WIREs Comput Mol Sci – volume: 91 year: 2003 article-title: Dispersion energy from density‐functional theory description of monomers publication-title: Phys Rev Lett – volume: 111 start-page: 12822 year: 2007 end-page: 12838 article-title: Interactions in diatomic dimers involving closed‐shell metals publication-title: J Phys Chem A – volume: 134 year: 2011 article-title: An efficient, fragment‐based electronic structure method for molecular systems: Self‐consistent polarization with perturbative two‐body exchange and dispersion publication-title: J Chem Phys – volume: 112 start-page: 75 year: 2012 end-page: 107 article-title: Explicitly correlated R12/F12 methods for electronic structure publication-title: Chem Rev – volume: 17 start-page: 858 year: 2015 end-page: 867 article-title: On the directionality and non‐linearity of halogen and hydrogen bonds publication-title: Phys Chem Chem Phys – volume: 129 start-page: 084101 year: 2008 article-title: Symmetry‐adapted perturbation theory utilizing density functional description of monomers for high‐spin open‐shell complexes publication-title: J Chem Phys – volume: 120 start-page: 8461 year: 2016 end-page: 8468 article-title: Halogen bonding with phosphine: Evidence for Mulliken inner complexes and the importance of relaxation energy publication-title: J Phys Chem A – volume: 71 start-page: 4993 year: 1979 end-page: 4999 article-title: On first‐row diatomic molecules and local density models publication-title: J Chem Phys – volume: 2 start-page: 254 year: 2012 end-page: 272 article-title: Symmetry‐adapted perturbation theory of intermolecular forces publication-title: WIREs Comput Mol Sci – volume: 141 year: 2014 article-title: Intermolecular symmetry‐adapted perturbation theory study of large organic complexes publication-title: J Chem Phys – volume: 145 start-page: 134106 year: 2016 article-title: Density‐fitted open‐shell symmetry‐adapted perturbation theory and application to ‐stacking in benzene dimer cation and ionized DNA base pair steps publication-title: J Chem Phys – volume: 118 start-page: 4386 year: 2003 end-page: 4403 article-title: three‐body interactions for water. I. Potential and structure of water trimer publication-title: J Chem Phys – volume: 28 start-page: 171 year: 1997 end-page: 188 article-title: Convergence of symmetry‐adapted perturbation theory for the interaction between helium atoms and between a hydrogen molecule and a helium atom publication-title: Adv Quantum Chem – volume: 8 start-page: 1985 year: 2006 end-page: 1993 article-title: Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs publication-title: Phys Chem Chem Phys – volume: 16 start-page: 7209 year: 2014 end-page: 7221 article-title: Importance of dispersion forces for prediction of thermodynamic and transport properties of some common ionic liquids publication-title: Phys Chem Chem Phys – volume: 21 start-page: 15815 year: 2019 end-page: 15822 article-title: Noble gas dimers confined inside C publication-title: Phys Chem Chem Phys – volume: 135 start-page: 174107 year: 2011 article-title: Large‐scale symmetry‐adapted perturbation theory computations via density fitting and Laplace transformation techniques: Investigating the fundamental forces of DNA‐intercalator interactions publication-title: J Chem Phys – volume: 13 start-page: 5404 year: 2017 end-page: 5419 article-title: Intricacies of van der Waals interactions in systems with elongated bonds revealed by electron‐groups embedding and high‐level coupled‐cluster approaches publication-title: J Chem Theory Comput – volume: 128 start-page: 234108 year: 2008 article-title: The variational explicit polarization potential and analytical first derivative of energy: Towards a next generation force field publication-title: J Chem Phys – volume: 1 start-page: 3 year: 2011 end-page: 17 article-title: Noncovalent interactions in biochemistry publication-title: WIREs Comput Mol Sci – volume: D62 start-page: 639 year: 2006 end-page: 647 article-title: Interaction energies between glycopeptide antibiotics and substrates in complexes determined by X‐ray crystallography: Application of a theoretical databank of aspherical atoms and a symmetry‐adapted perturbation theory‐based set of interatomic potentials publication-title: Acta Crystallogr – volume: 145 start-page: 214305 year: 2016 article-title: Theoretical study of the buffer‐gas cooling and trapping of CrH(X ∑ ) by He atoms publication-title: J Chem Phys – volume: 18 start-page: 10297 year: 2016 end-page: 10308 article-title: Analysis of transition state stabilization by non‐covalent interactions in the Houk‐List model of organocatalyzed intermolecular aldol additions using functional‐group symmetry‐adapted perturbation theory publication-title: Phys Chem Chem Phys – volume: 100 start-page: 14316 year: 1996 end-page: 14328 article-title: Energy decomposition analyses for many‐body interaction and applications to water complexes publication-title: J Phys Chem – volume: 58 start-page: 4496 year: 1973 end-page: 4501 article-title: Coulombic potential energy integrals and approximations publication-title: J Chem Phys – volume: 88 start-page: 741 year: 1996 end-page: 758 article-title: Symmetry‐adapted perturbation theory for the calculation of Hartree‐Fock interaction energies publication-title: Mol Phys – volume: 7 start-page: 2197 year: 2016 end-page: 2203 article-title: Revised damping parameters for the D3 dispersion correction to density functional Theory publication-title: J Phys Chem Lett – volume: 117 start-page: 7918 year: 2013 end-page: 7927 article-title: Nature of noncovalent interactions in catenane supramolecular complexes: Calibrating the MM3 force field with ab initio, DFT, and SAPT methods publication-title: J Phys Chem A – volume: 10 start-page: 4332 year: 2014 end-page: 4341 article-title: Intergeminal correction to the antisymmetrized product of strongly orthogonal geminals derived from the extended random phase approximation publication-title: J Chem Theory Comput – volume: 48 start-page: 4118 year: 2019 end-page: 4154 article-title: Theory and practice of modeling van der Waals interactions in electronic‐structure calculations publication-title: Chem Soc Rev – volume: 116 start-page: 9591 year: 2002 end-page: 9601 article-title: On the required shape corrections to the local density and generalized gradient approximations to the Kohn‐Sham potentials for molecular response calculations of (hyper)polarizabilities and excitation energies publication-title: J Chem Phys – volume: 2 start-page: 5157 year: 2017 end-page: 5166 article-title: − , − , and − stacking interactions between six‐membered cyclic systems. Dispersion dominates and electrostatics commands publication-title: ChemistrySelect – volume: 11 start-page: 4727 year: 2015 end-page: 4732 article-title: Polar flattening and the strength of halogen bonding publication-title: J Chem Theory Comput – volume: 15 start-page: 17742 year: 2013 end-page: 17751 article-title: The relative roles of electrostatics and dispersion in the stabilization of halogen bonds publication-title: Phys Chem Chem Phys – volume: 132 year: 2010 article-title: A second generation distributed point polarizable water model publication-title: J Chem Phys – volume: 4 start-page: 4285 year: 2002 end-page: 4291 article-title: A fully direct RI‐HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency publication-title: Phys Chem Chem Phys – volume: 119 start-page: 3025 year: 2003 end-page: 3039 article-title: Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm publication-title: J Chem Phys – volume: 11 start-page: 4197 year: 2015 end-page: 4204 article-title: Assessment of empirical models versus high‐accuracy ab initio methods for nucleobase stacking: Evaluating the importance of charge penetration publication-title: J Chem Theory Comput – volume: 1129 start-page: 57 year: 2018 end-page: 69 article-title: Intermolecular dispersion energies from coupled exact‐exchange Kohn‐Sham excitation energies and vectors publication-title: Comput Theor Chem – volume: B72 start-page: 439 year: 2016 end-page: 459 article-title: Report on the sixth blind test of organic crystal structure prediction methods publication-title: Acta Crystallogr – volume: 8 start-page: 2835 year: 2012 end-page: 2843 article-title: Accurate prediction of noncovalent interaction energies with the effective fragment potential method: Comparison of energy components to symmetry‐adapted perturbation theory for the S22 test set publication-title: J Chem Theory Comput – volume: 112 start-page: 632 year: 2012 end-page: 672 article-title: Fragmentation methods: A route to accurate calculations on large systems publication-title: Chem Rev – volume: 81 start-page: 1929 year: 1984 end-page: 1939 article-title: (Heisenberg) exchange and electrostatic interactions between O molecules: An ab initio study publication-title: J Chem Phys – volume: 117 start-page: 2053 year: 2013 end-page: 2066 article-title: Physically‐motivated force fields from symmetry‐adapted perturbation theory publication-title: J Phys Chem A – volume: 109 start-page: 10180 year: 1998 end-page: 10189 article-title: Improving virtual Kohn‐Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities publication-title: J Chem Phys – volume: 120 start-page: 6287 year: 2016 end-page: 6302 article-title: Interaction of boron‐nitrogen doped benzene isomers with water publication-title: J Phys Chem A – volume: 121 start-page: 6148 year: 2017 end-page: 6162 article-title: First‐principles interaction analysis assessment of the manganese cation in the catalytic activity of glycosyltransferases publication-title: J Phys Chem B – volume: 147 year: 2017 article-title: The nature of three‐body interactions in DFT: Exchange and polarization effects publication-title: J Chem Phys – volume: 20 start-page: 617 year: 2001 end-page: 643 article-title: Bond functions, basis set superposition errors and other practical issues with ab initio calculations of intermolecular potentials publication-title: Int Rev Phys Chem – volume: 132 start-page: 6498 year: 2010 end-page: 6506 article-title: Revealing noncovalent interactions publication-title: J Am Chem Soc – volume: 998 start-page: 26 year: 2012 end-page: 33 article-title: Halogen bond, hydrogen bond and N⋯C interaction—On interrelation among these three noncovalent interactions publication-title: Comp Theor Chem – volume: 15 start-page: 204 year: 2013 end-page: 212 article-title: Nitrogen dioxide at the air‐water interface: Trapping, absorption, and solvation in the bulk and at the surface publication-title: Phys Chem Chem Phys – volume: 345 start-page: 640 year: 2014 end-page: 643 article-title: Ab initio determination of the crystalline benzene lattice energy to sub‐kilojoule/mole accuracy publication-title: Science – volume: 9 start-page: 2151 year: 2013 end-page: 2155 article-title: Describing noncovalent interactions beyond the common approximations: How accurate is the ‘Gold Standard,’ CCSD(T) at the complete basis set limit? publication-title: J Chem Theory Comput – volume: 7 start-page: 5198 year: 2016 end-page: 5204 article-title: Implications of charge penetration for heteroatom‐containing organic semiconductors publication-title: J Phys Chem Lett – volume: 82 start-page: 89 year: 1974 end-page: 155 article-title: Quantum electrodynamical corrections to fine‐structure of helium publication-title: Ann Phys – volume: 362 start-page: 319 year: 2002 end-page: 325 article-title: Intermolecular induction and exchange‐induction energies from coupled‐perturbed Kohn‐Sham density functional theory publication-title: Chem Phys Lett – volume: 103 start-page: 9347 year: 1995 end-page: 9354 article-title: A density functional theory study of frequency‐dependent polarizabilities and Van der Waals dispersion coefficients for polyatomic molecules publication-title: J Chem Phys – volume: 111 start-page: 2570 year: 2013 end-page: 2584 article-title: Single‐determinant‐based symmetry‐adapted perturbation theory without single‐exchange approximation publication-title: Mol Phys – volume: 137 start-page: 164104 year: 2012 article-title: Symmetry‐adapted perturbation theory based on unrestricted Kohn‐Sham orbitals for high‐spin open‐shell van der Waals complexes publication-title: J Chem Phys – volume: 143 year: 2015 article-title: Communication: Practical intramolecular symmetry adapted perturbation theory via Hartree‐Fock embedding publication-title: J Chem Phys – volume: 7 start-page: 2399 year: 2011 end-page: 2407 article-title: Aurophilic interactions from wave function, symmetry‐adapted perturbation theory, and rangehybrid approaches publication-title: J Chem Theory Comput – volume: 57 start-page: 13853 year: 2018 end-page: 13857 article-title: Theory meets experiment for noncovalent complexes: The puzzling case of pnicogen interactions publication-title: Angew Chem Int Ed – volume: 100 start-page: 5080 year: 1994 end-page: 5093 article-title: Many‐body theory of exchange effects in intermolecular interactions. Density matrix approach and applications to He‐F , He‐HF, H ‐HF, and Ar‐H dimers publication-title: J Chem Phys – volume: 127 start-page: 211 year: 2010 end-page: 221 article-title: Orbital relaxation and the third‐order induction energy in symmetry‐adapted perturbation theory publication-title: Theor Chem Acc – volume: 96 start-page: 6796 year: 1992 end-page: 6806 article-title: Electron affinities of the 1st‐row atoms revisited—Systematic basis sets and wave functions publication-title: J Chem Phys – volume: 14 start-page: 2955 year: 2018 end-page: 2978 article-title: Atomic orbital implementation of extended symmetry‐adapted perturbation theory (XSAPT) and benchmark calculations for large supramolecular complexes publication-title: J Chem Theory Comput – volume: 14 start-page: 1943 year: 2018 end-page: 1959 article-title: DFT‐SAPT intermolecular interaction energies employing exact‐exchange Kohn‐Sham response methods publication-title: J Chem Theory Comput – volume: 110 start-page: 10345 year: 2006 end-page: 10354 article-title: Potential energy surface for the benzene dimer and perturbational analysis of − interactions publication-title: J Phys Chem A – volume: 112 start-page: 3159 year: 2000 end-page: 3169 article-title: Intramonomer correlation contributions to first‐order exchange nonadditivity in trimers publication-title: J Chem Phys – volume: 134 start-page: 11116 year: 2012 end-page: 11119 article-title: The water hexamer: Cage, prism, or both. Full dimensional quantum simulations say both publication-title: J Am Chem Soc – volume: 141 start-page: 234111 year: 2014 article-title: Appointing silver and bronze standards for noncovalent interactions: A comparison of spin‐component‐scaled (SCS), explicitly correlated (F12), and specialized wavefunction approaches publication-title: J Chem Phys – volume: 16 start-page: 9987 year: 2014 end-page: 9996 article-title: The strength and directionality of a halogen bond are co‐determined by the magnitude and size of the ‐hole publication-title: Phys Chem Chem Phys – volume: 9 start-page: 370 year: 2013 end-page: 389 article-title: Interactions between methane and polycyclic aromatic hydrocarbons: A high accuracy benchmark study publication-title: J Chem Theory Comput – volume: 70 start-page: 062505 year: 2004 article-title: Long‐range–short‐range separation of the electron‐electron interaction in density‐functional theory publication-title: Phys Rev A – volume: 123 start-page: 8607 year: 2019 end-page: 8618 article-title: Chiral self recognition: Interactions in propylene oxide complexes publication-title: J Phys Chem A – volume: 136 year: 2012 article-title: Scattering resonances in slow NH ‐He collisions publication-title: J Chem Phys – volume: 101 start-page: 115503 year: 2008 article-title: Predicting structure of molecular crystals from first principles publication-title: Phys Rev Lett – volume: 10 start-page: 3745 year: 2014 end-page: 3756 article-title: Simultaneous visualization of covalent and noncovalent interactions using regions of density overlap publication-title: J Chem Theory Comput – volume: 103 start-page: 263201 year: 2009 article-title: Dispersionless density functional theory publication-title: Phys Rev Lett – volume: 116 start-page: 5038 year: 2016 end-page: 5071 article-title: Benchmark calculations of interaction energies in noncovalent complexes and their applications publication-title: Chem Rev – volume: 119 start-page: 123401 year: 2017 article-title: Pair potential with submillikelvin uncertainties and nonadiabatic treatment of the halo state of the helium dimer publication-title: Phys Rev Lett – volume: 115 start-page: 1137 year: 2001 end-page: 1152 article-title: Convergence behavior of the symmetry‐adapted perturbation theory for states submerged in Pauli forbidden continuum publication-title: J Chem Phys – volume: 84 start-page: 4072 year: 2000 end-page: 4075 article-title: Water pair and three‐body potential of spectroscopic quality from calculations publication-title: Phys Rev Lett – volume: 115 start-page: 11321 year: 2011 end-page: 11330 article-title: Comparison of intermolecular interaction energies from SAPT and DFT including empirical dispersion contributions publication-title: J Phys Chem A – volume: 12 start-page: 2553 year: 2016 end-page: 2568 article-title: Comparison of the effective fragment potential method with symmetry‐adapted perturbation theory in the calculation of intermolecular energies for ionic liquids publication-title: J Chem Theory Comput – volume: 14 start-page: 3440 year: 2018 end-page: 3450 article-title: Comparison of the DFT‐SAPT and canonical EDA schemes for the energy decomposition of various types of noncovalent interactions publication-title: J Chem Theory Comput – volume: 128 year: 2008 article-title: Systematic optimization of long‐range corrected hybrid density functionals publication-title: J Chem Phys – volume: 110 start-page: 6158 year: 1999 end-page: 6170 article-title: Toward reliable density functional methods without adjustable parameters: The PBE0 model publication-title: J Chem Phys – volume: 45 start-page: 409 year: 1993 end-page: 431 article-title: Møller‐Plesset expansion of the dispersion energy in the ring approximation publication-title: Int J Quantum Chem – volume: 13 start-page: 161 year: 2017 end-page: 179 article-title: The monomer electron density force field (MEDFF): A physically inspired model for noncovalent interactions publication-title: J Chem Theory Comput – volume: 14 start-page: 739 year: 2018 end-page: 758 article-title: New angles on standard force fields: Toward a general approach for treating atomic‐level anisotropy publication-title: J Chem Theory Comput – volume: 103 start-page: 8058 year: 1995 end-page: 8074 article-title: Symmetry‐adapted perturbation‐theory of nonadditive 3‐body interactions in van‐der‐Waals molecules.1. General theory publication-title: J Chem Phys – volume: 7 year: 2017 article-title: Molecular electrostatic potentials and noncovalent interactions publication-title: WIREs Comput Mol Sci – volume: 118 start-page: 6367 year: 2014 end-page: 6384 article-title: Assessing the performance of dispersionless and dispersion‐accounting methods: Helium interaction with cluster models of the TiO (110) surface publication-title: J Phys Chem A – volume: 100 start-page: 2900 year: 1994 end-page: 2909 article-title: Natural energy decomposition analysis: An energy partitioning procedure for molecular interactions with application to weak hydrogen bonding, strong ionic, and moderate donor‐acceptor interactions publication-title: J Chem Phys – volume: 11 start-page: 528 year: 2015 end-page: 537 article-title: Robust, basis‐set independent method for the evaluation of charge‐transfer energy in noncovalent complexes publication-title: J Chem Theory Comput – volume: 90 start-page: 1007 year: 1989 end-page: 1023 article-title: Gaussian‐basis sets for use in correlated molecular calculations. 1. The atoms boron through neon and hydrogen publication-title: J Chem Phys – volume: 139 start-page: 184104 year: 2013 article-title: Linear‐scaling symmetry‐adapted perturbation theory with scaled dispersion publication-title: J Chem Phys – volume: 150 start-page: 154101 year: 2019 article-title: ZMP‐SAPT: DFT‐SAPT using densities publication-title: J Chem Phys – volume: 122 start-page: 204103 year: 2005 article-title: The calculation of excitation energies based on the relativistic two‐component zeroth‐order regular approximation and time‐dependent density‐functional with full use of symmetry publication-title: J Chem Phys – volume: 97 start-page: 7555 year: 1992 end-page: 7559 article-title: On the convergence of the symmetrized Rayleigh‐Schrödinger perturbation theory for molecular interaction energies publication-title: J Chem Phys – volume: 86 start-page: 5652 year: 1987 end-page: 5659 article-title: Intraatomic correlation effects for the He‐He dispersion and exchange dispersion energies using explicitly correlated Gaussian geminals publication-title: J Chem Phys – volume: 5 start-page: 849 year: 2014 end-page: 855 article-title: Hard numbers for large molecules: Toward exact energetics for supramolecular systems publication-title: J Phys Chem Lett – volume: 1 start-page: 255 year: 1964 end-page: 374 article-title: Recent developments in perturbation theory publication-title: Adv Quantum Chem – volume: 130 year: 2009 article-title: Third‐order dispersion energy from response functions publication-title: J Chem Phys – volume: 135 start-page: 1306 year: 2013 end-page: 1316 article-title: Quantum‐mechanical analysis of the energetic contributions to stacking in nucleic acids versus rise, twist, and slide publication-title: J Am Chem Soc – volume: 33 start-page: 3742 year: 1986 end-page: 3748 article-title: Relativistic electronic‐structure calculations employing a 2‐component no‐pair formalism with external‐field projection operators publication-title: Phys Rev A – volume: 112 start-page: 5308 year: 2000 end-page: 5319 article-title: Spectra of Ar–CO from potential energy surfaces publication-title: J Chem Phys – volume: 7 year: 2017 article-title: First‐principles modeling of molecular crystals: Structures and stabilities, temperature and pressure publication-title: WIREs Comput Mol Sci – volume: 11 start-page: 267 year: 2010 end-page: 298 – volume: 149 year: 2018 article-title: A physically grounded damped dispersion model with particle mesh Ewald summation publication-title: J Chem Phys – volume: 2 start-page: 400 year: 2006 end-page: 412 article-title: Density‐fitting method in symmetry‐adapted perturbation theory based on Kohn‐Sham description of monomers publication-title: J Chem Theory Comput – volume: 132 year: 2010 article-title: Interactions of graphene sheets deduced from properties of polycyclic aromatic hydrocarbons publication-title: J Chem Phys – volume: 121 start-page: 8541 year: 2017 end-page: 8547 article-title: Intercolumnar interactions control the local orientations within columnar stacks of sumanene and sumanene derivatives publication-title: J Phys Chem C – volume: 113 start-page: 8918 year: 2000 end-page: 8935 article-title: Asymptotic correction approach to improving approximate exchange‐correlation potentials: Time‐dependent density‐functional theory calculations of molecular excitation spectra publication-title: J Chem Phys – volume: 119 start-page: 4620 year: 2003 end-page: 4628 article-title: Distributed dispersion: A new approach publication-title: J Chem Phys – volume: 140 start-page: 121104 year: 2014 article-title: Communication: Resolving the three‐body contribution to the lattice energy of crystalline benzene: Benchmark results from coupled‐cluster theory publication-title: J Chem Phys – volume: 116 start-page: 14031 year: 2012 end-page: 14039 article-title: Robust, transferable, and physically motivated force fields for gas adsorption in functionalized zeolitic imidazolate frameworks publication-title: J Phys Chem C – volume: 49 start-page: 2421 year: 1994 end-page: 2431 article-title: Exchange‐correlation potential with correct asymptotic behavior publication-title: Phys Rev A – volume: 131 year: 2009 article-title: How to tell when a model Kohn‐Sham potential is not a functional derivative publication-title: J Chem Phys – volume: 100 start-page: 4998 year: 1994 end-page: 5010 article-title: Many‐body theory of intermolecular induction interactions publication-title: J Chem Phys – volume: 101 start-page: 282 year: 1999 end-page: 291 article-title: Degenerate symmetry‐adapted perturbation theory of weak interactions between closed‐ and open‐shell monomers: Application to Rydberg states of helium hydride publication-title: Theor Chem Acc – volume: 445 start-page: 315 year: 2007 end-page: 320 article-title: Electrostatic interaction energies with overlap effects from a localized approach publication-title: Chem Phys Lett – volume: 130 year: 2009 article-title: A long‐range‐corrected density functional that performs well for both ground‐state properties and time‐dependent density functional theory excitation energies, including charge‐transfer excited states publication-title: J Chem Phys – volume: 3 start-page: 3241 year: 2012 end-page: 3248 article-title: Accurate intermolecular interactions at dramatically reduced cost: XPol+SAPT with empirical dispersion publication-title: J Phys Chem Lett – volume: 12 start-page: 10476 year: 2010 end-page: 10493 article-title: Large‐scale compensation of errors in pairwise‐additive empirical force fields: Comparison of AMBER intermolecular terms with rigorous DFT‐SAPT calculations publication-title: Phys Chem Chem Phys – volume: 6 start-page: 1931 year: 2010 end-page: 1934 article-title: How different are electron‐rich and electron‐deficient interactions? publication-title: J Chem Theory Comput – volume: 14 start-page: 7846 year: 2012 end-page: 7853 article-title: Adsorption of a water molecule on the MgO(100) surface as described by cluster and slab models publication-title: Phys Chem Chem Phys – volume: 106 start-page: 5109 year: 1997 end-page: 5122 article-title: Helium dimer potential from symmetry‐adapted perturbation theory calculations using large Gaussian geminal and orbital basis sets publication-title: J Chem Phys – volume: 94 year: 2016 article-title: Determination of the exchange interaction energy from the polarization expansion of the wave function publication-title: Phys Rev A – volume: 450 start-page: 203 year: 2008 end-page: 209 article-title: Interaction potential for the quintet state of the O ‐O dimer from symmetry‐adapted perturbation theory based on DFT description of monomers publication-title: Chem Phys Lett – volume: 122 year: 2005 article-title: Density‐functional theory‐symmetry‐adapted intermolecular perturbation theory with density fitting: A new efficient method to study intermolecular interaction energies publication-title: J Chem Phys – volume: 547 start-page: 293 year: 2001 end-page: 307 article-title: Symmetry‐adapted perturbation theory with regularized Coulomb potential publication-title: J Mol Struct – volume: 119 start-page: 10497 year: 2003 end-page: 10511 article-title: Dispersion interaction of high‐spin open‐shell complexes in the random phase approximation publication-title: J Chem Phys – volume: 147 start-page: 174103 year: 2017 article-title: Benchmark CCSD‐SAPT study of rare gas dimers with comparison to MP‐SAPT and DFT‐SAPT publication-title: J Chem Phys – volume: 83 start-page: 233 year: 1981 end-page: 239 article-title: Distributed multipole analysis, or how to describe a molecular charge‐distribution publication-title: Chem Phys Lett – volume: 105 start-page: 646 year: 2001 end-page: 659 article-title: Using Kohn‐Sham orbitals in symmetry‐adapted perturbation theory to investigate intermolecular interactions publication-title: J Phys Chem A – volume: 19 start-page: 4651 year: 2013 end-page: 4659 article-title: Halogen bond tunability II: The varying roles of electrostatic and dispersion contributions to attraction in halogen bonds publication-title: J Mol Model – volume: 145 start-page: 124105 year: 2016 article-title: Blind test of density‐functional‐based methods on intermolecular interaction energies publication-title: J Chem Phys – volume: 414 start-page: 111 year: 2005 end-page: 116 article-title: Efficient calculations of coupled Kohn‐Sham dynamic susceptibility functions and dispersion energies with density fitting publication-title: Chem Phys Lett – volume: 126 start-page: 164102 year: 2007 article-title: General orbital invariant MP2‐F12 theory publication-title: J Chem Phys – volume: 11 start-page: 361 year: 1990 end-page: 373 article-title: Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis publication-title: J Comput Chem – volume: 52 start-page: 997 year: 1984 end-page: 1000 article-title: Density‐functional theory for time‐dependent systems publication-title: Phys Rev Lett – volume: 1 start-page: 550 year: 2010 end-page: 555 article-title: Extension of the Hartree‐Fock plus dispersion method by first‐order correlation effects publication-title: J Phys Chem Lett – volume: 134 start-page: 124117 year: 2011 article-title: Long‐range interactions between an atom in its ground S state and an open‐shell linear molecule publication-title: J Chem Phys – volume: 103 start-page: 4586 year: 1995 end-page: 4599 article-title: Dispersion energy in the coupled pair approximation with noniterative inclusion of single and triple excitations publication-title: J Chem Phys – volume: 5 start-page: 515 year: 2009 end-page: 529 article-title: Comprehensive energy analysis for various types of ‐interaction publication-title: J Chem Theory Comput – volume: 63 start-page: 205 year: 1988 end-page: 224 article-title: On the connection between the supermolecular Møller‐Plesset treatment of the interaction energy and the perturbation theory of intermolecular forces publication-title: Mol Phys – volume: 73 start-page: 343 year: 1980 end-page: 359 article-title: The ‘primitive’ wave function in the theory of intermolecular interactions publication-title: J Chem Phys – volume: 151 year: 2019 article-title: Self‐consistent charge embedding at very low cost, with application to symmetry‐adapted perturbation theory publication-title: J Chem Phys – start-page: 3 year: 1997 end-page: 44 – volume: 10 start-page: 6509 year: 2008 end-page: 6519 article-title: Second‐order exchange‐induction energy of intermolecular interactions from coupled cluster density matrices and their cumulants publication-title: Phys Chem Chem Phys – volume: 143 start-page: 224107 year: 2015 article-title: Intramolecular symmetry‐adapted perturbation theory with a single‐determinant wavefunction publication-title: J Chem Phys – volume: 116 start-page: 6397 year: 2002 end-page: 6410 article-title: Explicitly correlated second‐order Møller‐Plesset methods with auxiliary basis sets publication-title: J Chem Phys – volume: 127 start-page: 164103 year: 2007 article-title: Frozen core and effective core potentials in symmetry‐adapted perturbation theory publication-title: J Chem Phys – volume: 4 start-page: 436 year: 2014 end-page: 467 article-title: Dirac‐exact relativistic methods: The normalized elimination of the small component method publication-title: WIREs Comput Mol Sci – volume: 143 start-page: 084124 year: 2015 article-title: An energy decomposition analysis for second‐order Møller‐Plesset perturbation theory based on absolutely localized molecular orbitals publication-title: J Chem Phys – volume: 32 start-page: 1456 year: 2011 end-page: 1465 article-title: Effect of the damping function in dispersion corrected density functional theory publication-title: J Comput Chem – volume: 9 start-page: 6004 year: 2007 end-page: 6011 article-title: On the role of higher‐order correlation effects on the induction interactions between closed‐shell molecules publication-title: Phys Chem Chem Phys – volume: 28 start-page: 8181 year: 2016 end-page: 8189 article-title: Nature of the binding interactions between conjugated polymer chains and fullerenes in bulk heterojunction organic solar cells publication-title: Chem Mater – volume: 77 start-page: 3865 year: 1996 end-page: 3868 article-title: Generalized gradient approximation made simple publication-title: Phys Rev Lett – volume: 116 start-page: 5155 year: 2016 end-page: 5187 article-title: Computer modeling of halogen bonds and other ‐hole interactions publication-title: Chem Rev – volume: 1116 start-page: 174 year: 2017 end-page: 183 article-title: A possible valence‐bond approach to symmetry‐adapted perturbation theory publication-title: Comp Theor Chem – volume: 140 start-page: 114304 year: 2014 article-title: Localized overlap algorithm for unexpanded dispersion energies publication-title: J Chem Phys – volume: 357 start-page: 464 year: 2002 end-page: 470 article-title: First‐order intermolecular interaction energies from Kohn‐Sham orbitals publication-title: Chem Phys Lett – volume: 135 start-page: 7005 year: 2013 end-page: 7009 article-title: Are halogen bonded structures electrostatically driven? publication-title: J Am Chem Soc – volume: 137 start-page: 8775 year: 2015 end-page: 8782 article-title: Rubrene: The interplay between intramolecular and intermolecular interactions determines the planarization of its tetracene core in the solid state publication-title: J Am Chem Soc – volume: 120 start-page: 7024 year: 2016 end-page: 7036 article-title: Ab initio force fields for imidazolium‐based ionic liquids publication-title: J Phys Chem B – volume: 115 start-page: 2775 year: 2017 end-page: 2781 article-title: Quasi‐relativistic two‐component computations of intermolecular dispersion energies publication-title: Mol Phys – volume: 40 start-page: 7 year: 1965 end-page: 18 article-title: Spiers memorial lecture: Intermolecular forces publication-title: Disc Farad Soc – volume: 10 start-page: 281 year: 1976 end-page: 297 article-title: First‐order perturbation treatment of the short‐range repulsion in a system of many closed‐shell atoms or molecules publication-title: Int J Quantum Chem – volume: 50 start-page: 3649 year: 1969 end-page: 3661 article-title: Perturbed Hartree‐Fock theory. I. Diagrammatic double‐perturbation analysis publication-title: J Chem Phys – volume: 103 start-page: 7374 year: 1995 end-page: 7391 article-title: On the effectiveness of monomer‐, dimer‐, and bond‐centered basis functions in calculations of intermolecular interaction energies publication-title: J Chem Phys – volume: 18 start-page: 828 year: 2017 end-page: 838 article-title: Interplay among electrostatic, dispersion, and steric interactions: Spectroscopy and quantum chemical calculations of ‐hydrogen bonded complexes publication-title: ChemPhysChem – volume: 139 start-page: 174102 year: 2013 article-title: Tractability gains in symmetry‐adapted perturbation theory including coupled double excitations: CCD+ST(CCD) dispersion with natural orbital truncations publication-title: J Chem Phys – volume: 129 year: 2008 article-title: Simultaneous benchmarking of ground‐ and excited‐state properties with long‐range‐corrected density functional theory publication-title: J Chem Phys – volume: 39 start-page: 93 year: 2018 end-page: 104 article-title: Dissecting the concave‐convex − interaction in corannulene and sumanene dimers: SAPT(DFT) analysis and performance of DFT dispersion‐corrected methods publication-title: J Comput Chem – volume: 125 start-page: 154107 year: 2006 article-title: Third‐order interactions in symmetry‐adapted perturbation theory publication-title: J Chem Phys – volume: 48 start-page: 161 year: 1993 end-page: 183 article-title: Explicitly connected expansion for the average value of an observable in the coupled‐cluster theory publication-title: Int J Quantum Chem – volume: 10 start-page: 325 year: 1976 end-page: 340 article-title: A new energy decomposition scheme for molecular interactions within the Hartree‐Fock approximation publication-title: Int J Quantum Chem – volume: 130 start-page: 10854 year: 2008 end-page: 10855 article-title: Substituent effects in the benzene dimer are due to direct interactions of the substituents with the unsubstituted benzene publication-title: J Am Chem Soc – volume: 15 start-page: 14310 year: 2013 end-page: 14318 article-title: Orthogonal interactions between nitryl derivatives and electron donors: Pnictogen bonds publication-title: Phys Chem Chem Phys – volume: 54 start-page: 1255 year: 2015 end-page: 1260 article-title: Metal‐atom impact on the self‐assembly of cup‐and‐ball metalloporphyrin‐fullerene conjugates publication-title: Angew Chem Int Ed – volume: 26 start-page: 193 year: 2007 end-page: 222 article-title: Atom‐atom potentials from calculations publication-title: Int Rev Phys Chem – volume: 477 start-page: 308 year: 2011 end-page: 311 article-title: Overcoming lability of extremely long alkane carbon‐carbon bonds through dispersion forces publication-title: Nature – volume: 14 start-page: 7578 year: 2012 end-page: 7590 article-title: Practical quantum mechanics‐based fragment methods for predicting molecular crystal properties publication-title: Phys Chem Chem Phys – volume: 4 start-page: 523 year: 2014 end-page: 540 article-title: The many faces of halogen bonding: A review of theoretical models and methods publication-title: WIREs Comput Mol Sci – volume: 55 start-page: 1275 year: 1985 end-page: 1286 article-title: Time‐dependent Hartree‐Fock calculations of dispersion energy publication-title: Mol Phys – volume: 32 start-page: 149 year: 1987 end-page: 164 article-title: Direct calculation of the Hartree‐Fock interaction energy via exchange perturbation expansion—The He = He interaction publication-title: Int J Quantum Chem – volume: 135 start-page: 234306 year: 2011 article-title: First principles potential for the acetylene dimer and refinement by fitting to experiments publication-title: J Chem Phys – volume: 114 start-page: 652 year: 2001 end-page: 660 article-title: Shape corrections to exchange‐correlation potentials by gradient‐regulated seamless connection of model potentials for inner and outer region publication-title: J Chem Phys – volume: 116 start-page: 3175 year: 2002 end-page: 3183 article-title: Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations publication-title: J Chem Phys – volume: 18 start-page: 9955 year: 2012 end-page: 9964 article-title: Supramolecular binding thermodynamics by dispersion‐corrected density functional theory publication-title: Chem A Eur J – volume: 2 start-page: 41 year: 1973 end-page: 51 article-title: Self‐consistent molecular Hartree‐Fock‐Slater calculations I. The computational procedure publication-title: Chem Phys – volume: 143 year: 2015 article-title: Reliable prediction of three‐body intermolecular interactions using dispersion‐corrected second‐order Møller‐Plesset perturbation theory publication-title: J Chem Phys – volume: 19 start-page: 791 year: 2017 end-page: 803 article-title: On the role of charge transfer in halogen bonding publication-title: Phys Chem Chem Phys – volume: 8 year: 2018 article-title: Gas sensing and capturing based on two‐dimensional layered materials: Overview from theoretical perspective publication-title: WIREs Comput Mol Sci – volume: 106 start-page: 9618 year: 1997 end-page: 9626 article-title: Interfacing relativistic and nonrelativistic methods. I. Normalized elimination of the small component in the modified Dirac equation publication-title: J Chem Phys – volume: 12 start-page: 5895 year: 2016 end-page: 5919 article-title: Automatic generation of intermolecular potential energy surfaces publication-title: J Chem Theory Comput – volume: 111 start-page: 8753 year: 2007 end-page: 8765 article-title: Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals publication-title: J Phys Chem A – volume: 157 start-page: 479 year: 1989 end-page: 483 article-title: A 5th‐order perturbation comparison of electron correlation theories publication-title: Chem Phys Lett – volume: 91 start-page: 893 year: 1991 end-page: 928 article-title: A quantum theory of molecular structure and its applications publication-title: Chem Rev – volume: 7 start-page: 2427 year: 2011 end-page: 2438 article-title: S66: A well‐balanced database of benchmark interaction energies relevant to biomolecular structures publication-title: J Chem Theory Comput – volume: 15 start-page: 1016 year: 2019 end-page: 1027 article-title: Second‐order dispersion energy based on multireference description of monomers publication-title: J Chem Theory Comput – volume: 140 start-page: 244302 year: 2014 article-title: Dynamics of gas phase Ne*+NH and Ne*+ND Penning ionisation at low temperatures publication-title: J Chem Phys – volume: 130 year: 2009 article-title: Simplified CCSD(T)‐F12 methods: Theory and benchmarks publication-title: J Chem Phys – volume: 147 start-page: 161725 year: 2017 article-title: Improving the accuracy of Møller‐Plesset perturbation theory with neural networks publication-title: J Chem Phys – volume: 116 start-page: 43 year: 2005 end-page: 117 article-title: Intermolecular interactions via perturbation theory: From diatoms to biomolecules publication-title: Struct Bonding – volume: 229 start-page: 175 year: 1994 end-page: 180 article-title: Can (semi)local density functional theory account for the London dispersion forces? publication-title: Chem Phys Lett – volume: 133 start-page: 104107 year: 2010 article-title: Efficient evaluation of triple excitations in symmetry‐adapted perturbation theory via second‐order Moller‐Plesset perturbation theory natural orbitals publication-title: J Chem Phys – volume: 140 start-page: 094106 year: 2014 article-title: Levels of symmetry adapted perturbation theory (SAPT). I Efficiency and performance for interaction energies publication-title: J Chem Phys – volume: 10 start-page: 4417 year: 2014 end-page: 4431 article-title: Chemical assignment of symmetry‐adapted perturbation theory interaction energy components: The functional‐group SAPT partition publication-title: J Chem Theory Comput – volume: 100 start-page: 4227 year: 2000 end-page: 4252 article-title: State of the art and challenges of the theory of intermolecular interactions publication-title: Chem Rev – volume: 367 start-page: 778 year: 2003 end-page: 784 article-title: Intermolecular dispersion energies from time‐dependent density functional theory publication-title: Chem Phys Lett – volume: 102 start-page: 6692 year: 2005 end-page: 6697 article-title: Auxiliary basis expansions for large‐scale electronic structure calculations publication-title: Proc Natl Acad Sci USA – volume: 100 start-page: 1723 year: 2002 end-page: 1734 article-title: Electrostatic interactions between molecules from relaxed one‐electron density matrices of the coupled cluster singles and doubles model publication-title: Mol Phys – volume: 9 start-page: 5313 year: 2013 end-page: 5326 article-title: Charge transfer from regularized symmetry‐adapted perturbation theory publication-title: J Chem Theory Comput – volume: 96 start-page: 719 year: 1999 end-page: 733 article-title: Integral‐direct electron correlation methods publication-title: Mol Phys – volume: 1 start-page: 211 year: 2011 end-page: 228 article-title: Density functional theory with London dispersion corrections publication-title: WIREs Comput Mol Sci – volume: 7 start-page: 1791 year: 2011 end-page: 1803 article-title: Accurate intermolecular potentials with physically grounded electrostatics publication-title: J Chem Theory Comput – volume: 9 start-page: 3479 year: 2013 end-page: 3490 article-title: Broad transferability of substituent effects in ‐stacking interactions provides new insights into their origin publication-title: J Chem Theory Comput – volume: 118 start-page: 7411 year: 2014 end-page: 7417 article-title: Sorption of H to open metal sites in a metal‐organic framework: A symmetry‐adapted perturbation theory analysis publication-title: J Phys Chem A – volume: 107 start-page: 432 year: 1997 end-page: 449 article-title: Normal order and extended Wick theorem for a multiconfiguration reference wave function publication-title: J Chem Phys – volume: 69 start-page: 141 year: 2004 end-page: 176 article-title: Convergence behavior of symmetry‐adapted perturbation expansions for excited states. A model study of interactions involving a triplet helium atom publication-title: Collect Czech Chem Commun – volume: 11 start-page: 3785 year: 2015 end-page: 3801 article-title: Comprehensive benchmark of association (free) energies of realistic host‐guest complexes publication-title: J Chem Theory Comput – volume: 38 start-page: 191 year: 1979 end-page: 208 article-title: Symmetry‐adapted double‐perturbation analysis of intramolecular correlation effects in weak intermolecular interactions: The He‐He interaction publication-title: Mol Phys – volume: 3 start-page: 9348 year: 2018 end-page: 9359 article-title: On the nature of − , − , and − stacking in extended systems publication-title: ACS Omega – volume: 116 start-page: 5567 year: 2016 end-page: 5613 article-title: Modeling polymorphic molecular crystals with electronic structure theory publication-title: Chem Rev – volume: 117 start-page: 5124 year: 2002 end-page: 5134 article-title: Symmetry‐forcing procedure and convergence behavior of perturbation expansions for molecular interaction energies publication-title: J Chem Phys – volume: 113 start-page: 5496 year: 2009 end-page: 5505 article-title: On the unusual properties of halogen bonds: A detailed ab initio study of X –(H O) clusters (X = Cl and Br) publication-title: J Phys Chem A – volume: 21 start-page: 14521 year: 2019 end-page: 14529 article-title: Ultrahigh binding affinity of a hydrocarbon guest inside cucurbit[7]uril enhanced by strong host‐guest charge matching publication-title: Phys Chem Chem Phys – volume: 128 start-page: 144112 year: 2008 article-title: Improved supermolecular second order Møller‐Plesset intermolecular interaction energies using time‐dependent density functional response theory publication-title: J Chem Phys – volume: 2 start-page: 242 year: 2012 end-page: 253 article-title: Molpro: A general‐purpose quantum chemistry program package publication-title: WIREs Comput Mol Sci – volume: 6 start-page: 117 year: 1934 article-title: Le orbite s degli elementi publication-title: Mem Accad Italia – volume: 5 start-page: 5010 year: 2003 end-page: 5014 article-title: The helium dimer potential from a combined density functional theory and symmetry‐adapted perturbation theory approach using an exact exchange‐correlation potential publication-title: Phys Chem Chem Phys – volume: 139 year: 2013 article-title: First‐principle interaction potentials for metastable He( S) and Ne( P) with closed‐shell molecules: Application to Penning‐ionizing systems publication-title: J Chem Phys – volume: 133 year: 2010 article-title: Density fitting of intramonomer correlation effects in symmetry‐adapted perturbation theory publication-title: J Chem Phys – volume: 11 start-page: 2609 year: 2015 end-page: 2618 article-title: General model for treating short‐range electrostatic penetration in a molecular mechanics force field publication-title: J Chem Theory Comput – start-page: 919 year: 2005 end-page: 962 – volume: 38 start-page: 2500 year: 2017 end-page: 2508 article-title: Intramolecular interactions in sterically crowded hydrocarbon molecules publication-title: J Comput Chem – volume: 10 start-page: 5698 year: 2008 end-page: 5705 article-title: Two‐particle density matrix cumulant of coupled cluster theory publication-title: Phys Chem Chem Phys – volume: 60 start-page: 491 year: 1930 end-page: 527 article-title: Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften publication-title: Z Phys – volume: 124 start-page: 204105 year: 2006 article-title: An efficient self‐consistent field method for large systems of weakly interacting components publication-title: J Chem Phys – volume: 108 start-page: 236402 year: 2012 article-title: Accurate and efficient method for many‐body van der Waals interactions publication-title: Phys Rev Lett – volume: 113 start-page: 6687 year: 2000 end-page: 6701 article-title: Water pair potential of near spectroscopic accuracy. I. Analysis of potential surface and virial coefficients publication-title: J Chem Phys – volume: 5 start-page: 2663 year: 2009 end-page: 2678 article-title: Exchange‐dispersion energy: A formulation in terms of monomer properties and coupled cluster treatment of intramonomer correlation publication-title: J Chem Theory Comput – volume: 118 start-page: 6584 year: 2014 end-page: 6594 article-title: Global ab initio potential energy surface for the O ( ) + N ( ) interaction. Applications to the collisional, spectroscopic, and thermodynamic properties of the complex publication-title: J Phys Chem A – volume: 118 start-page: 8149 year: 2003 end-page: 8160 article-title: Fast linear scaling second‐order Møller‐Plesset perturbation theory (MP2) using local and density fitting approximations publication-title: J Chem Phys – volume: 7 start-page: 3027 year: 2011 end-page: 3034 article-title: Perspectives on basis sets beautiful: Seasonal plantings of diffuse basis functions publication-title: J Chem Theory Comput – volume: 15 start-page: 5965 year: 2019 end-page: 5986 article-title: Explicitly correlated dispersion and exchange dispersion energies in symmetry‐adapted perturbation theory publication-title: J Chem Theory Comput – volume: 79 start-page: 291 year: 2007 end-page: 352 article-title: Coupled‐cluster theory in quantum chemistry publication-title: Rev Mod Phys – ident: e_1_2_10_323_1 doi: 10.1126/science.1254419 – ident: e_1_2_10_47_1 doi: 10.1063/1.4929479 – ident: e_1_2_10_81_1 doi: 10.1063/1.466661 – ident: e_1_2_10_152_1 doi: 10.1039/c002653k – ident: e_1_2_10_378_1 doi: 10.1063/1.1594713 – ident: e_1_2_10_365_1 doi: 10.1063/1.2712434 – ident: e_1_2_10_394_1 doi: 10.1063/1.1564816 – ident: e_1_2_10_135_1 doi: 10.1063/1.4811833 – ident: e_1_2_10_324_1 doi: 10.1103/PhysRevLett.84.4072 – ident: e_1_2_10_116_1 doi: 10.1016/0009-2614(94)01402-H – ident: e_1_2_10_44_1 doi: 10.1021/jp107557p – ident: e_1_2_10_15_1 doi: 10.1002/wcms.1361 – ident: e_1_2_10_340_1 doi: 10.1039/b804513e – ident: e_1_2_10_241_1 doi: 10.1039/C3CP53035C – ident: e_1_2_10_108_1 doi: 10.1080/00268976.2013.827253 – ident: e_1_2_10_265_1 doi: 10.1063/1.3567306 – ident: e_1_2_10_271_1 doi: 10.1063/1.4812182 – ident: e_1_2_10_392_1 doi: 10.1021/acs.jctc.7b01053 – ident: e_1_2_10_114_1 doi: 10.1021/ct401111c – ident: e_1_2_10_314_1 doi: 10.1002/qua.560230203 – ident: e_1_2_10_168_1 doi: 10.1063/1.5001028 – ident: e_1_2_10_284_1 doi: 10.1016/j.cplett.2009.03.073 – ident: e_1_2_10_58_1 doi: 10.1063/1.1499488 – ident: e_1_2_10_187_1 doi: 10.1021/ct400481r – ident: e_1_2_10_362_1 doi: 10.1063/1.464179 – ident: e_1_2_10_27_1 doi: 10.1021/acs.chemrev.6b00446 – ident: e_1_2_10_6_1 doi: 10.1002/wcms.86 – ident: e_1_2_10_251_1 doi: 10.1021/ja3063309 – ident: e_1_2_10_52_1 doi: 10.1021/acs.jctc.8b00034 – ident: e_1_2_10_151_1 doi: 10.1021/jp064095o – ident: e_1_2_10_405_1 doi: 10.1073/pnas.0408475102 – ident: e_1_2_10_128_1 doi: 10.1063/1.1327260 – ident: e_1_2_10_103_1 doi: 10.1063/1.470309 – ident: e_1_2_10_54_1 doi: 10.1016/S0065-3276(08)60214-2 – ident: e_1_2_10_261_1 doi: 10.1021/jp503182h – ident: e_1_2_10_140_1 doi: 10.1103/PhysRevA.53.1316 – ident: e_1_2_10_209_1 doi: 10.1021/jp412765t – ident: e_1_2_10_319_1 doi: 10.1063/1.480567 – ident: e_1_2_10_46_1 doi: 10.1021/jp073685z – ident: e_1_2_10_285_1 doi: 10.1021/acs.jpca.6b12930 – ident: e_1_2_10_310_1 doi: 10.1002/jcc.24908 – ident: e_1_2_10_38_1 doi: 10.1002/jcc.26003 – ident: e_1_2_10_414_1 doi: 10.1002/jcc.540110311 – ident: e_1_2_10_95_1 doi: 10.1063/1.456069 – ident: e_1_2_10_74_1 doi: 10.1002/qua.560140306 – ident: e_1_2_10_260_1 doi: 10.1016/j.cplett.2007.11.014 – ident: e_1_2_10_179_1 doi: 10.1039/C9CP00422J – ident: e_1_2_10_419_1 doi: 10.1103/PhysRevLett.108.236402 – ident: e_1_2_10_91_1 doi: 10.1021/ct800471b – ident: e_1_2_10_134_1 doi: 10.1063/1.3073302 – ident: e_1_2_10_317_1 doi: 10.1063/1.473831 – ident: e_1_2_10_9_1 doi: 10.1002/wcms.1168 – ident: e_1_2_10_305_1 doi: 10.1021/acs.jpca.9b06028 – ident: e_1_2_10_159_1 doi: 10.1021/acs.jctc.5b00002 – ident: e_1_2_10_255_1 doi: 10.1063/1.463475 – ident: e_1_2_10_193_1 doi: 10.1063/1.3300064 – ident: e_1_2_10_374_1 doi: 10.1021/ct400057w – ident: e_1_2_10_68_1 doi: 10.1007/BF01341258 – ident: e_1_2_10_231_1 doi: 10.1021/jz301015p – ident: e_1_2_10_51_1 doi: 10.1021/acs.jctc.6b00141 – ident: e_1_2_10_105_1 doi: 10.1063/1.470646 – ident: e_1_2_10_210_1 doi: 10.1021/jp412779q – ident: e_1_2_10_416_1 doi: 10.1021/ja304528m – ident: e_1_2_10_254_1 doi: 10.1002/qua.560180414 – ident: e_1_2_10_331_1 doi: 10.1063/1.4986291 – ident: e_1_2_10_174_1 doi: 10.1039/C3CP55188A – ident: e_1_2_10_208_1 doi: 10.1039/c2cp00015f – ident: e_1_2_10_180_1 doi: 10.1021/jp511101n – ident: e_1_2_10_403_1 doi: 10.1063/1.1445115 – ident: e_1_2_10_404_1 doi: 10.1039/B415208E – ident: e_1_2_10_401_1 doi: 10.1021/ct300200m – ident: e_1_2_10_345_1 doi: 10.1080/00268976.2012.746478 – ident: e_1_2_10_166_1 doi: 10.1021/ct400149j – ident: e_1_2_10_311_1 doi: 10.1063/1.4871116 – ident: e_1_2_10_364_1 doi: 10.1063/1.1461814 – ident: e_1_2_10_42_1 doi: 10.1063/1.466432 – ident: e_1_2_10_122_1 doi: 10.1016/S0009-2614(02)01097-7 – ident: e_1_2_10_391_1 doi: 10.1063/1.4827297 – ident: e_1_2_10_199_1 doi: 10.1002/jcc.25084 – ident: e_1_2_10_232_1 doi: 10.1063/1.4813523 – ident: e_1_2_10_37_1 doi: 10.1063/1.4903765 – ident: e_1_2_10_198_1 doi: 10.1021/acs.jpcc.7b02128 – ident: e_1_2_10_417_1 doi: 10.1021/acs.jctc.8b00527 – volume: 6 start-page: 117 year: 1934 ident: e_1_2_10_127_1 article-title: Le orbite ∞ s degli elementi publication-title: Mem Accad Italia – ident: e_1_2_10_218_1 doi: 10.1021/ct200185h – ident: e_1_2_10_219_1 doi: 10.1021/jp303790r – ident: e_1_2_10_338_1 doi: 10.1063/1.2889006 – ident: e_1_2_10_87_1 doi: 10.1002/qua.560320202 – ident: e_1_2_10_399_1 doi: 10.1063/1.3656681 – ident: e_1_2_10_234_1 doi: 10.1002/jcc.21759 – ident: e_1_2_10_110_1 doi: 10.1063/1.462569 – ident: e_1_2_10_92_1 doi: 10.1021/acs.jpclett.6b00780 – ident: e_1_2_10_153_1 doi: 10.1021/acs.jctc.6b00913 – ident: e_1_2_10_300_1 doi: 10.1021/ja5101245 – ident: e_1_2_10_276_1 doi: 10.1021/ct500478t – ident: e_1_2_10_325_1 doi: 10.1063/1.1542871 – ident: e_1_2_10_262_1 doi: 10.1063/1.3079541 – ident: e_1_2_10_360_1 doi: 10.1063/1.5087208 – volume: 72 start-page: 439 year: 2016 ident: e_1_2_10_238_1 article-title: Report on the sixth blind test of organic crystal structure prediction methods publication-title: Acta Crystallogr – ident: e_1_2_10_370_1 doi: 10.1080/00268977900101601 – ident: e_1_2_10_132_1 doi: 10.1063/1.2409292 – ident: e_1_2_10_86_1 doi: 10.1063/1.1671609 – ident: e_1_2_10_258_1 doi: 10.1063/1.4963385 – ident: e_1_2_10_169_1 doi: 10.1021/acs.chemrev.5b00560 – ident: e_1_2_10_341_1 doi: 10.1039/b807329e – ident: e_1_2_10_55_1 doi: 10.1007/s002140050442 – ident: e_1_2_10_396_1 doi: 10.1063/1.3426316 – ident: e_1_2_10_79_1 doi: 10.1063/1.465554 – ident: e_1_2_10_59_1 doi: 10.1063/1.1676119 – ident: e_1_2_10_349_1 doi: 10.1063/1.464913 – start-page: 3 volume-title: Molecular interactions—From van der Waals to strongly bound complexes year: 1997 ident: e_1_2_10_84_1 – ident: e_1_2_10_385_1 doi: 10.1063/1.2784391 – ident: e_1_2_10_101_1 doi: 10.1021/jp300109y – ident: e_1_2_10_377_1 doi: 10.1021/cr200204r – ident: e_1_2_10_177_1 doi: 10.1016/j.comptc.2012.05.012 – ident: e_1_2_10_56_1 doi: 10.1135/cccc20040141 – ident: e_1_2_10_351_1 doi: 10.1063/1.4997569 – ident: e_1_2_10_225_1 doi: 10.1021/acs.jctc.6b00969 – ident: e_1_2_10_80_1 doi: 10.1063/1.467225 – ident: e_1_2_10_348_1 doi: 10.1103/PhysRevB.37.785 – ident: e_1_2_10_375_1 doi: 10.1021/acs.jctc.9b00547 – ident: e_1_2_10_420_1 doi: 10.1063/1.5111869 – ident: e_1_2_10_191_1 doi: 10.1002/slct.201700671 – ident: e_1_2_10_23_1 doi: 10.1021/acs.chemrev.5b00644 – ident: e_1_2_10_66_1 doi: 10.1021/ja204294q – ident: e_1_2_10_203_1 doi: 10.1039/C4CP04354E – ident: e_1_2_10_26_1 doi: 10.1146/annurev-physchem-040215-112047 – ident: e_1_2_10_230_1 doi: 10.1021/jp205031e – ident: e_1_2_10_294_1 doi: 10.1039/C6CP07475H – ident: e_1_2_10_279_1 doi: 10.1021/ar0402006 – ident: e_1_2_10_350_1 doi: 10.1063/1.2126975 – ident: e_1_2_10_312_1 doi: 10.1063/1.4936830 – ident: e_1_2_10_69_1 doi: 10.1039/df9654000007 – ident: e_1_2_10_104_1 doi: 10.1063/1.452542 – ident: e_1_2_10_274_1 doi: 10.1016/j.comptc.2017.03.008 – ident: e_1_2_10_421_1 doi: 10.1016/j.cplett.2007.07.065 – ident: e_1_2_10_352_1 doi: 10.1002/wcms.82 – ident: e_1_2_10_102_1 doi: 10.1021/ct5010593 – ident: e_1_2_10_270_1 doi: 10.1039/C9DT00182D – ident: e_1_2_10_299_1 doi: 10.1021/ct500724p – ident: e_1_2_10_2_1 doi: 10.1103/PhysRevLett.119.123401 – ident: e_1_2_10_256_1 doi: 10.1063/1.2968556 – ident: e_1_2_10_112_1 doi: 10.1080/00268978800100171 – ident: e_1_2_10_196_1 doi: 10.1021/jp305700k – ident: e_1_2_10_275_1 doi: 10.1021/acs.jctc.8b01058 – volume: 62 start-page: 639 year: 2006 ident: e_1_2_10_212_1 article-title: Interaction energies between glycopeptide antibiotics and substrates in complexes determined by X‐ray crystallography: Application of a theoretical databank of aspherical atoms and a symmetry‐adapted perturbation theory‐based set of interatomic potentials publication-title: Acta Crystallogr – ident: e_1_2_10_407_1 doi: 10.1063/1.1589749 – ident: e_1_2_10_353_1 doi: 10.1063/1.4931809 – ident: e_1_2_10_21_1 doi: 10.1021/acs.chemrev.5b00526 – ident: e_1_2_10_402_1 doi: 10.1039/b204199p – ident: e_1_2_10_70_1 doi: 10.1080/00268978500102021 – ident: e_1_2_10_77_1 doi: 10.1007/BF00533487 – ident: e_1_2_10_409_1 doi: 10.1039/c2cp24060b – ident: e_1_2_10_29_1 doi: 10.1063/1.4978951 – ident: e_1_2_10_83_1 doi: 10.1021/cr00031a008 – ident: e_1_2_10_347_1 doi: 10.1063/1.478522 – start-page: 79 volume-title: Methods and techniques in computational chemistry: METECC‐94 year: 1993 ident: e_1_2_10_82_1 – ident: e_1_2_10_34_1 doi: 10.1021/cr990048z – ident: e_1_2_10_280_1 doi: 10.1063/1.447867 – ident: e_1_2_10_422_1 doi: 10.1063/1.4867969 – ident: e_1_2_10_17_1 doi: 10.1021/ar400303a – ident: e_1_2_10_337_1 doi: 10.1039/b708483h – ident: e_1_2_10_388_1 doi: 10.1016/0301-0104(73)80059-X – ident: e_1_2_10_322_1 doi: 10.1063/1.4869686 – ident: e_1_2_10_397_1 doi: 10.1063/1.3451077 – ident: e_1_2_10_418_1 doi: 10.1021/acs.jpclett.9b01156 – volume: 9 start-page: e1442 year: 2019 ident: e_1_2_10_16_1 article-title: Finding chemical concepts in the Hilbert space: Coupled cluster analyses of noncovalent interactions publication-title: WIREs Comput Mol Sci – ident: e_1_2_10_266_1 doi: 10.1039/C8CP05749D – ident: e_1_2_10_119_1 doi: 10.1063/1.1924593 – ident: e_1_2_10_142_1 doi: 10.1016/S0009-2614(99)00515-1 – ident: e_1_2_10_223_1 doi: 10.1063/1.5030434 – ident: e_1_2_10_246_1 doi: 10.1002/anie.201409487 – ident: e_1_2_10_19_1 doi: 10.1039/C4CS00375F – ident: e_1_2_10_211_1 doi: 10.1063/1.2173256 – ident: e_1_2_10_386_1 doi: 10.1080/00268976.2017.1317861 – ident: e_1_2_10_252_1 doi: 10.1021/acs.jctc.5b00588 – ident: e_1_2_10_13_1 doi: 10.1002/wcms.1326 – ident: e_1_2_10_117_1 doi: 10.1021/jp003883p – ident: e_1_2_10_290_1 doi: 10.1063/1.2834918 – ident: e_1_2_10_161_1 doi: 10.1021/ct900108f – ident: e_1_2_10_287_1 doi: 10.1103/PhysRevA.70.062505 – ident: e_1_2_10_240_1 doi: 10.1021/jp208150b – ident: e_1_2_10_259_1 doi: 10.1021/acs.jctc.8b00058 – ident: e_1_2_10_162_1 doi: 10.1039/C0CP00968G – ident: e_1_2_10_35_1 doi: 10.1103/RevModPhys.79.291 – ident: e_1_2_10_316_1 doi: 10.1063/1.470171 – ident: e_1_2_10_155_1 doi: 10.1063/1.2905808 – ident: e_1_2_10_333_1 doi: 10.1135/cccc20051109 – ident: e_1_2_10_237_1 doi: 10.1103/PhysRevLett.101.115503 – ident: e_1_2_10_327_1 doi: 10.1039/c2cp23949c – ident: e_1_2_10_184_1 doi: 10.1002/jcc.24226 – ident: e_1_2_10_207_1 doi: 10.1002/jcc.23994 – ident: e_1_2_10_171_1 doi: 10.1021/ja401420w – ident: e_1_2_10_354_1 doi: 10.1103/PhysRevA.94.042708 – ident: e_1_2_10_188_1 doi: 10.1021/ct100182u – ident: e_1_2_10_283_1 doi: 10.1002/chem.201802385 – ident: e_1_2_10_109_1 doi: 10.1063/1.456153 – ident: e_1_2_10_334_1 doi: 10.1080/00268970110105424 – ident: e_1_2_10_424_1 doi: 10.1007/s00214-019-2414-5 – ident: e_1_2_10_149_1 doi: 10.1063/1.3668283 – ident: e_1_2_10_361_1 doi: 10.1063/1.4907204 – ident: e_1_2_10_106_1 doi: 10.1021/jp076412c – ident: e_1_2_10_298_1 doi: 10.1063/1.4889855 – ident: e_1_2_10_111_1 doi: 10.1021/ct200106a – ident: e_1_2_10_216_1 doi: 10.1063/1.3276460 – ident: e_1_2_10_182_1 doi: 10.1021/jp4016933 – ident: e_1_2_10_22_1 doi: 10.1021/acs.chemrev.5b00652 – ident: e_1_2_10_148_1 doi: 10.1063/1.1311289 – ident: e_1_2_10_301_1 doi: 10.1039/C8CP04962A – ident: e_1_2_10_50_1 doi: 10.1021/ct200673a – ident: e_1_2_10_257_1 doi: 10.1063/1.4758455 – ident: e_1_2_10_73_1 doi: 10.1007/430_004 – ident: e_1_2_10_224_1 doi: 10.1021/acs.jctc.6b00209 – ident: e_1_2_10_376_1 doi: 10.1021/cr200168z – ident: e_1_2_10_194_1 doi: 10.1021/ct400036b – ident: e_1_2_10_368_1 doi: 10.1063/1.4734597 – ident: e_1_2_10_97_1 doi: 10.1063/1.467218 – start-page: 3 volume-title: Annual reports in computational chemistry year: 2017 ident: e_1_2_10_28_1 – ident: e_1_2_10_165_1 doi: 10.1039/C6CP05030A – ident: e_1_2_10_228_1 doi: 10.1103/PhysRevLett.103.263201 – ident: e_1_2_10_4_1 doi: 10.1002/wcms.8 – ident: e_1_2_10_39_1 doi: 10.1002/qua.560100211 – ident: e_1_2_10_264_1 doi: 10.1063/1.4900478 – ident: e_1_2_10_412_1 doi: 10.1063/1.2936122 – ident: e_1_2_10_227_1 doi: 10.1021/jz9002444 – ident: e_1_2_10_359_1 doi: 10.1103/PhysRevA.50.2138 – ident: e_1_2_10_410_1 doi: 10.1021/jp5098603 – ident: e_1_2_10_96_1 doi: 10.1007/s00214-010-0748-0 – ident: e_1_2_10_76_1 doi: 10.1021/acs.jctc.5b01241 – ident: e_1_2_10_126_1 doi: 10.1063/1.1319649 – ident: e_1_2_10_32_1 doi: 10.1063/1.5116151 – ident: e_1_2_10_156_1 doi: 10.1021/ct9005882 – ident: e_1_2_10_120_1 doi: 10.1063/1.2135288 – ident: e_1_2_10_25_1 doi: 10.1021/acs.chemrev.5b00648 – ident: e_1_2_10_389_1 doi: 10.1063/1.1679012 – ident: e_1_2_10_41_1 doi: 10.1063/1.3159673 – ident: e_1_2_10_233_1 doi: 10.1063/1.3382344 – ident: e_1_2_10_235_1 doi: 10.1103/PhysRevLett.121.113402 – ident: e_1_2_10_181_1 doi: 10.1039/c3cp52312h – ident: e_1_2_10_335_1 doi: 10.1080/00268970600673975 – ident: e_1_2_10_94_1 doi: 10.1063/1.481120 – ident: e_1_2_10_30_1 doi: 10.1021/jacs.8b07985 – ident: e_1_2_10_129_1 doi: 10.1103/PhysRevA.49.2421 – ident: e_1_2_10_204_1 doi: 10.1039/C7CC03116E – ident: e_1_2_10_269_1 doi: 10.1021/acs.jpcb.7b03714 – ident: e_1_2_10_293_1 doi: 10.1021/ct501115m – ident: e_1_2_10_346_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_10_400_1 doi: 10.1063/1.4826520 – ident: e_1_2_10_60_1 doi: 10.1016/S0065-3276(08)60381-0 – ident: e_1_2_10_62_1 doi: 10.1063/1.439880 – ident: e_1_2_10_226_1 doi: 10.1021/acs.jctc.7b00851 – ident: e_1_2_10_85_1 doi: 10.1080/00268970600693395 – ident: e_1_2_10_64_1 doi: 10.1007/BF00558020 – ident: e_1_2_10_131_1 doi: 10.1063/1.1383587 – ident: e_1_2_10_282_1 doi: 10.1063/1.5086079 – ident: e_1_2_10_5_1 doi: 10.1002/wcms.30 – ident: e_1_2_10_313_1 doi: 10.1063/1.4927575 – ident: e_1_2_10_296_1 doi: 10.1021/ja100936w – ident: e_1_2_10_366_1 doi: 10.1063/1.2817618 – ident: e_1_2_10_398_1 doi: 10.1063/1.3479400 – ident: e_1_2_10_202_1 doi: 10.1021/ct3008809 – ident: e_1_2_10_267_1 doi: 10.1021/ct200243s – ident: e_1_2_10_308_1 doi: 10.1021/jacs.7b02349 – ident: e_1_2_10_144_1 doi: 10.1063/1.469994 – ident: e_1_2_10_242_1 doi: 10.1021/acs.jpcb.5b05115 – ident: e_1_2_10_278_1 doi: 10.1063/1.5021891 – ident: e_1_2_10_137_1 doi: 10.1103/PhysRevLett.52.997 – ident: e_1_2_10_138_1 doi: 10.1002/qua.560450502 – ident: e_1_2_10_221_1 doi: 10.1021/acs.jctc.5b00267 – ident: e_1_2_10_143_1 doi: 10.1063/1.1476007 – ident: e_1_2_10_146_1 doi: 10.1016/j.cplett.2005.08.048 – ident: e_1_2_10_178_1 doi: 10.1039/C4CP03376K – ident: e_1_2_10_158_1 doi: 10.1002/chem.201200497 – ident: e_1_2_10_113_1 doi: 10.1021/cr00031a001 – ident: e_1_2_10_411_1 doi: 10.1021/ct700167b – ident: e_1_2_10_78_1 doi: 10.1063/1.461528 – ident: e_1_2_10_289_1 doi: 10.1007/s00214-002-0377-3 – ident: e_1_2_10_303_1 doi: 10.1039/C5CP07281F – ident: e_1_2_10_63_1 doi: 10.1002/(SICI)1097-461X(1996)60:1<273::AID-QUA28>3.0.CO;2-E – ident: e_1_2_10_133_1 doi: 10.1063/1.2954017 – ident: e_1_2_10_123_1 doi: 10.1016/S0009-2614(02)01796-7 – ident: e_1_2_10_243_1 doi: 10.1021/acs.jpcb.6b09489 – ident: e_1_2_10_292_1 doi: 10.1021/cr200148b – ident: e_1_2_10_31_1 doi: 10.1063/1.5075487 – ident: e_1_2_10_145_1 doi: 10.1063/1.438313 – ident: e_1_2_10_192_1 doi: 10.1039/b719725j – ident: e_1_2_10_248_1 doi: 10.1021/acs.chemmater.5b03266 – ident: e_1_2_10_183_1 doi: 10.1002/anie.201807751 – ident: e_1_2_10_281_1 doi: 10.1021/acs.jctc.7b00174 – ident: e_1_2_10_206_1 doi: 10.1063/1.4867071 – ident: e_1_2_10_36_1 doi: 10.1016/S0009-2614(89)87395-6 – ident: e_1_2_10_72_1 doi: 10.1103/PhysRev.73.360 – ident: e_1_2_10_247_1 doi: 10.1039/C9CP01762C – ident: e_1_2_10_297_1 doi: 10.1021/ct500490b – ident: e_1_2_10_320_1 doi: 10.1063/1.1723844 – ident: e_1_2_10_185_1 doi: 10.1021/ja802849j – volume: 17 start-page: 629 year: 1943 ident: e_1_2_10_321_1 article-title: Force between nonpolar molecules publication-title: Proc Phys Math Soc Jpn – ident: e_1_2_10_215_1 doi: 10.1039/c002656e – ident: e_1_2_10_390_1 doi: 10.1080/00268979909483008 – ident: e_1_2_10_408_1 doi: 10.1063/1.3560026 – ident: e_1_2_10_263_1 doi: 10.1039/C2CP42810E – ident: e_1_2_10_253_1 doi: 10.1016/j.jphotobiol.2018.11.007 – ident: e_1_2_10_124_1 doi: 10.1063/1.1824898 – ident: e_1_2_10_175_1 doi: 10.1021/acs.jctc.5b00687 – ident: e_1_2_10_363_1 doi: 10.1080/01442350110071957 – ident: e_1_2_10_332_1 doi: 10.1002/qua.560480303 – ident: e_1_2_10_272_1 doi: 10.1063/1.4883517 – ident: e_1_2_10_315_1 doi: 10.1016/B978-044451719-7/50076-7 – ident: e_1_2_10_220_1 doi: 10.1021/jp3108182 – ident: e_1_2_10_387_1 doi: 10.1063/1.1899143 – ident: e_1_2_10_118_1 doi: 10.1016/S0009-2614(02)00533-X – ident: e_1_2_10_383_1 doi: 10.1002/wcms.1181 – ident: e_1_2_10_10_1 doi: 10.1002/wcms.1189 – ident: e_1_2_10_413_1 doi: 10.1063/1.2191500 – ident: e_1_2_10_393_1 doi: 10.1016/0009-2614(93)87156-W – ident: e_1_2_10_277_1 doi: 10.1063/1.441359 – ident: e_1_2_10_130_1 doi: 10.1016/j.cplett.2005.08.060 – ident: e_1_2_10_291_1 doi: 10.1021/acs.jctc.6b00155 – ident: e_1_2_10_98_1 doi: 10.1063/1.3058477 – ident: e_1_2_10_426_1 doi: 10.1080/00268976.2014.952696 – ident: e_1_2_10_167_1 doi: 10.1021/ct2002946 – ident: e_1_2_10_367_1 doi: 10.1063/1.3054300 – ident: e_1_2_10_295_1 doi: 10.1021/cr00005a013 – ident: e_1_2_10_330_1 doi: 10.1021/acs.jpca.6b05248 – ident: e_1_2_10_372_1 doi: 10.1103/RevModPhys.85.693 – ident: e_1_2_10_358_1 doi: 10.1039/b310529f – ident: e_1_2_10_371_1 doi: 10.1063/1.2770721 – ident: e_1_2_10_176_1 doi: 10.1021/acs.jpca.6b08945 – ident: e_1_2_10_65_1 doi: 10.1093/acprof:oso/9780199672394.001.0001 – ident: e_1_2_10_205_1 doi: 10.1002/qua.25379 – ident: e_1_2_10_309_1 doi: 10.1002/cphc.201600942 – ident: e_1_2_10_201_1 doi: 10.1021/jp110374b – ident: e_1_2_10_250_1 doi: 10.1039/C7CP03665E – ident: e_1_2_10_160_1 doi: 10.1021/jz402663k – ident: e_1_2_10_12_1 doi: 10.1002/wcms.1297 – ident: e_1_2_10_380_1 doi: 10.1103/PhysRevA.33.3742 – ident: e_1_2_10_213_1 doi: 10.1016/0009-2614(81)85452-8 – ident: e_1_2_10_75_1 doi: 10.1080/01442350601081931 – ident: e_1_2_10_373_1 doi: 10.1021/acs.jctc.8b00470 – ident: e_1_2_10_100_1 doi: 10.1002/qua.560100208 – ident: e_1_2_10_99_1 doi: 10.1063/1.2358353 – ident: e_1_2_10_40_1 doi: 10.1021/jp960694r – ident: e_1_2_10_11_1 doi: 10.1002/wcms.1294 – ident: e_1_2_10_197_1 doi: 10.1021/jacs.5b04066 – ident: e_1_2_10_141_1 doi: 10.1007/BFb0016643 – ident: e_1_2_10_8_1 doi: 10.1002/wcms.1164 – ident: e_1_2_10_395_1 doi: 10.1021/ct400250u – ident: e_1_2_10_339_1 doi: 10.1063/1.2933312 – ident: e_1_2_10_236_1 doi: 10.1063/1.4986081 – ident: e_1_2_10_344_1 doi: 10.1063/1.474405 – ident: e_1_2_10_369_1 doi: 10.1063/1.4800981 – ident: e_1_2_10_115_1 doi: 10.1016/0009-2614(94)01027-7 – ident: e_1_2_10_268_1 doi: 10.1063/1.4968529 – ident: e_1_2_10_89_1 doi: 10.1016/0009-2614(75)80278-8 – ident: e_1_2_10_342_1 doi: 10.1021/ct900232j – ident: e_1_2_10_189_1 doi: 10.1021/ct100686e – ident: e_1_2_10_67_1 doi: 10.1021/acs.jpclett.6b02585 – ident: e_1_2_10_150_1 doi: 10.1063/1.5053802 – ident: e_1_2_10_164_1 doi: 10.1021/ct200111a – ident: e_1_2_10_121_1 doi: 10.1016/S0009-2614(02)00538-9 – ident: e_1_2_10_172_1 doi: 10.1007/s00894-012-1428-x – ident: e_1_2_10_328_1 doi: 10.1063/1.3672810 – ident: e_1_2_10_222_1 doi: 10.1021/acs.jpcb.6b05328 – ident: e_1_2_10_154_1 doi: 10.1039/b709192c – ident: e_1_2_10_71_1 doi: 10.1103/PhysRevLett.91.033201 – ident: e_1_2_10_43_1 doi: 10.1021/ct0501093 – ident: e_1_2_10_170_1 doi: 10.1021/jp900490p – ident: e_1_2_10_14_1 doi: 10.1002/wcms.1355 – ident: e_1_2_10_329_1 doi: 10.1063/1.4927304 – ident: e_1_2_10_57_1 doi: 10.1063/1.1379330 – ident: e_1_2_10_217_1 doi: 10.1021/jp209335y – ident: e_1_2_10_53_1 doi: 10.1063/1.473556 – ident: e_1_2_10_139_1 doi: 10.1063/1.1620496 – ident: e_1_2_10_249_1 doi: 10.1021/acs.chemmater.6b02930 – ident: e_1_2_10_356_1 doi: 10.1016/j.comptc.2018.02.019 – ident: e_1_2_10_33_1 doi: 10.1039/C9CS00060G – ident: e_1_2_10_186_1 doi: 10.1002/anie.201102982 – ident: e_1_2_10_336_1 doi: 10.1063/1.2364489 – ident: e_1_2_10_18_1 doi: 10.1021/ar400326q – ident: e_1_2_10_384_1 doi: 10.1021/cr2001383 – ident: e_1_2_10_3_1 doi: 10.1021/acs.jctc.5b00296 – ident: e_1_2_10_90_1 doi: 10.1039/B600027D – ident: e_1_2_10_244_1 doi: 10.1002/anie.201508056 – ident: e_1_2_10_415_1 doi: 10.1021/jp8105919 – ident: e_1_2_10_306_1 doi: 10.1002/chem.200700602 – ident: e_1_2_10_307_1 doi: 10.1038/nature10367 – ident: e_1_2_10_214_1 doi: 10.1063/1.1594722 – ident: e_1_2_10_304_1 doi: 10.1039/C8CP02029A – ident: e_1_2_10_24_1 doi: 10.1021/acs.chemrev.5b00577 – volume-title: SAPT2016: An ab initio program for many‐body symmetry‐adapted perturbation theory calculations of intermolecular interaction energies ident: e_1_2_10_425_1 – ident: e_1_2_10_288_1 doi: 10.1016/S0166-1280(01)00478-X – ident: e_1_2_10_318_1 doi: 10.1063/1.480901 – ident: e_1_2_10_229_1 doi: 10.1021/ct300778e – ident: e_1_2_10_423_1 doi: 10.1021/acs.jctc.6b01198 – ident: e_1_2_10_357_1 doi: 10.1063/1.5007929 – ident: e_1_2_10_286_1 doi: 10.1021/ct400704a – ident: e_1_2_10_7_1 doi: 10.1002/wcms.84 – ident: e_1_2_10_163_1 doi: 10.1039/C9CP03015H – ident: e_1_2_10_93_1 doi: 10.1063/1.4867135 – ident: e_1_2_10_273_1 doi: 10.1021/acs.jctc.7b00797 – ident: e_1_2_10_136_1 doi: 10.1063/1.3176515 – ident: e_1_2_10_49_1 doi: 10.1021/acs.jctc.6b00523 – ident: e_1_2_10_88_1 doi: 10.1080/00268979650026262 – ident: e_1_2_10_45_1 doi: 10.1021/cr200093j – ident: e_1_2_10_326_1 doi: 10.1063/1.2733648 – ident: e_1_2_10_200_1 doi: 10.1021/acsomega.8b01339 – ident: e_1_2_10_239_1 doi: 10.1063/1.4961095 – ident: e_1_2_10_382_1 doi: 10.1063/1.2137315 – ident: e_1_2_10_157_1 doi: 10.1063/1.4893990 – ident: e_1_2_10_190_1 doi: 10.1002/cphc.201601405 – ident: e_1_2_10_245_1 doi: 10.1021/jp400051b – ident: e_1_2_10_355_1 doi: 10.1021/acs.jctc.7b01233 – ident: e_1_2_10_125_1 doi: 10.1063/1.477711 – ident: e_1_2_10_61_1 doi: 10.1016/0009-2614(67)80007-1 – ident: e_1_2_10_48_1 doi: 10.1039/C6CP03784D – ident: e_1_2_10_381_1 doi: 10.1063/1.473860 – start-page: 267 volume-title: Recent progress in coupled cluster methods. Challenges and advances in computational chemistry and physics year: 2010 ident: e_1_2_10_343_1 – ident: e_1_2_10_302_1 doi: 10.1002/chem.201701031 – ident: e_1_2_10_406_1 doi: 10.1063/1.3683219 – ident: e_1_2_10_107_1 doi: 10.1007/s00214-012-1235-6 – ident: e_1_2_10_173_1 doi: 10.1039/c3cp52768a – ident: e_1_2_10_195_1 doi: 10.1063/1.4979993 – ident: e_1_2_10_20_1 doi: 10.1021/acs.chemrev.5b00533 – ident: e_1_2_10_147_1 doi: 10.1021/ct050304h – ident: e_1_2_10_379_1 doi: 10.1016/0003-4916(74)90333-9 |
| SSID | ssj0000491231 |
| Score | 2.599363 |
| SecondaryResourceType | review_article |
| Snippet | Symmetry‐adapted perturbation theory (SAPT) is a well‐established method to compute accurate intermolecular interaction energies in terms of physical effects... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e1452 |
| SubjectTerms | Catalysis Catalysts Chemical synthesis Density functional theory Dispersion Electronic structure Electrostatic properties Electrostatics Exchanging Graphics Graphics processing units induction Mechanics Molecular interactions Molecular structure noncovalent interactions Perturbation theory Potential energy Scaling Statistical mechanics Symmetry symmetry‐adapted perturbation theory Theories Workflow |
| Title | Recent developments in symmetry‐adapted perturbation theory |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1452 https://www.proquest.com/docview/2390116320 |
| Volume | 10 |
| WOSCitedRecordID | wos000499677600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1759-0884 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000491231 issn: 1759-0876 databaseCode: DRFUL dateStart: 20110101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KK-jFt1itEsSDl2CyyXa7iAepFg9aRC32FvYJBRtLU5Xe_An-Rn-Js5ukVVAQvOUw2YTZeXyz7HyD0KGIlJZRzHzBmsaH-iv0hQmMbyTTtrPTEKXcsAna7bb6fXZTQSdlL0zODzE7cLOe4eK1dXAusuM5aeirHGbg5wTibw2D3cZVVDu_7fSuZkcsAH4hLruSixLmW_K1klsowMez979npDnM_ApWXbbprPzrP1fRcgEyvbPcKtZQRafraLFdznbbQKeAFiHbeGp-ZSjzBqmXTYdDDRIfb-9c8RGgUW-kx5CVhNtAz7U9TjdRr3Nx3770i0EKvsSMQrFJOacqYk1BAH9IImiocRBzpkJFsWw1GdFRKA23DeZMy0DZDlkplAkjwg2OtlA1fUr1NvKIwAIb8HSJoxiCNtecSkhwhhIehiqoo6NSmYksWMbtsIvHJOdHxonVR2L1UUcHM9FRTq3xk1Cj3JGk8K4swfagBoAktp9zuv99geShfX1nH3b-LrqLlrAtq929xgaqTsbPeg8tyJfJIBvvF2b2CYmY2Qw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kFerFt_ioGsSDl2Cy6Xa7oAepFsW2iFb0FvYJgq2lqUpv_gR_o7_E2TRpFRQEbzlMNmF2Z-abYecbgH0ZaaOiCvclr1of86_QlzawvlXcuM5OS7VOh02wdrt2f8-vZuAo74UZ80NMCm7OMlJ_7QzcFaQPp6yhr6qboKFTdMDFCh4jWoDi6XXjtjmpsSD6Rcec5lyMct-xr-XkQgE5nLz_PSRNceZXtJqGm8bC_350EeYzmOmdjM_FEsyY3jKU6vl0txU4RryI8cbT00tDiffQ85JRt2tQ4uPtXWjRRzzq9c0A45JMt9BLGx9Hq3DbOOvUz_1slIKvCGeYbjIhmI54VVJEIIpKFhoSVATXoWZE1aqcmihUVrgWc25UoF2PrJLahhEVlkRrUOg99cw6eFQSSSzauiJRBd22MIIpDHGWURGGOtiAg1ybscp4xt24i8d4zJBMYqeP2OljA_Ymov0xucZPQuV8S-LMvpKYuFINQkniPpcq__cF4rt668Y9bP5ddBdK551WM25etC-3YI64JDu95ViGwnDwbLZhVr0MH5LBTnbmPgGGytz8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsNAEF5KK-rFf7FaNYgHL6HJJtvtgh6ktSjWUtRib2F_oWBraarSm4_gM_okzqZJq6AgeMthsgmzOzPfDDvfIHQsAqVlEDJXsIpxIf_yXWE84xrJtO3sNESpZNgEbbWq3S5r59Bp1gsz5YeYFdysZST-2hq4HipTnrOGvsp-DIZOwAEXQsIqYJaF-m2j05zVWAD9gmNOci5KmGvZ1zJyIQ-XZ-9_D0lznPkVrSbhprH6vx9dQyspzHTOp-diHeX0YAMt1bLpbpvoDPAixBtHzS8NxU5v4MSTfl-DxMfbO1d8CHjUGeoRxCWRbKGTND5OtlCncXFfu3TTUQquxIxCukk5pypgFUEAgUgiqK-xF3KmfEWxrFYY0YEvDbct5kxLT9keWSmU8QPCDQ62UX7wNNA7yCECC2zA1iUOQnDbXHMqIcQZSrjvK6-ITjJtRjLlGbfjLh6jKUMyjqw-IquPIjqaiQ6n5Bo_CZWyLYlS-4ojbEs1ACWx_Vyi_N8XiB5qN3f2YffvoodosV1vRM2r1vUeWsY2x04uOZZQfjx61vtoQb6Me_HoID1yn0c93Hc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+developments+in+symmetry%E2%80%90adapted+perturbation+theory&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+molecular+science&rft.au=Patkowski%2C+Konrad&rft.date=2020-05-01&rft.issn=1759-0876&rft.eissn=1759-0884&rft.volume=10&rft.issue=3&rft_id=info:doi/10.1002%2Fwcms.1452&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_wcms_1452 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-0876&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-0876&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-0876&client=summon |