A Halfedge Refinement Rule for Parallel Catmull‐Clark Subdivision

We show that Catmull‐Clark subdivision induces an invariant one‐to‐four refinement rule for halfedges that reduces to simple algebraic expressions. This has two important consequences. First, it allows to refine the halfedges of the input mesh, which completely describe its topology, concurrently in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 40; číslo 8; s. 57 - 70
Hlavní autoři: Dupuy, J., Vanhoey, K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.12.2021
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We show that Catmull‐Clark subdivision induces an invariant one‐to‐four refinement rule for halfedges that reduces to simple algebraic expressions. This has two important consequences. First, it allows to refine the halfedges of the input mesh, which completely describe its topology, concurrently in breadth‐first order. Second, it makes the computation of the vertex points straightforward as the halfedges provide all the information that is needed. We leverage these results to derive a novel parallel implementation of Catmull‐Clark subdivision suitable for the GPU. Our implementation supports non‐quad faces, extraordinary vertices, boundaries and semi‐sharp creases seamlessly. Moreover, we show that its speed scales linearly with the number of processors, and yields state‐of‐the‐art performances on modern GPUs.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.14381