The Johansson‐Molloy theorem for DP‐coloring

The aim of this note is twofold. On the one hand, we present a streamlined version of Molloy's new proof of the bound χ(G)≤(1+o(1))Δ(G)/lnΔ(G) for triangle‐free graphs G, avoiding the technicalities of the entropy compression method and only using the usual “lopsided” Lovász Local Lemma (albeit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Random structures & algorithms Ročník 54; číslo 4; s. 653 - 664
Hlavní autor: Bernshteyn, Anton
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York John Wiley & Sons, Inc 01.07.2019
Wiley Subscription Services, Inc
Témata:
ISSN:1042-9832, 1098-2418
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The aim of this note is twofold. On the one hand, we present a streamlined version of Molloy's new proof of the bound χ(G)≤(1+o(1))Δ(G)/lnΔ(G) for triangle‐free graphs G, avoiding the technicalities of the entropy compression method and only using the usual “lopsided” Lovász Local Lemma (albeit in a somewhat unusual setting). On the other hand, we extend Molloy's result to DP‐coloring (also known as correspondence coloring), a generalization of list coloring introduced recently by Dvořák and Postle.
AbstractList The aim of this note is twofold. On the one hand, we present a streamlined version of Molloy's new proof of the bound χ(G)≤(1+o(1))Δ(G)/lnΔ(G) for triangle‐free graphs G, avoiding the technicalities of the entropy compression method and only using the usual “lopsided” Lovász Local Lemma (albeit in a somewhat unusual setting). On the other hand, we extend Molloy's result to DP‐coloring (also known as correspondence coloring), a generalization of list coloring introduced recently by Dvořák and Postle.
The aim of this note is twofold. On the one hand, we present a streamlined version of Molloy's new proof of the bound for triangle‐free graphs G , avoiding the technicalities of the entropy compression method and only using the usual “lopsided” Lovász Local Lemma (albeit in a somewhat unusual setting). On the other hand, we extend Molloy's result to DP‐coloring (also known as correspondence coloring), a generalization of list coloring introduced recently by Dvořák and Postle.
Author Bernshteyn, Anton
Author_xml – sequence: 1
  givenname: Anton
  surname: Bernshteyn
  fullname: Bernshteyn, Anton
  email: bernsht2@illinois.edu
  organization: University of Illinois at Urbana‐Champaign
BookMark eNp9kE1OwzAQhS0EEm1hwQ0isWKRduw4drKsyr-KQFDWlpOMaarULnYq1B1H4IychJSyQoLVG42-90bz-mTfOouEnFAYUgA28kEPGWSU7pEehTyLGafZ_nbmLM6zhB2SfggLAJAJS3oEZnOMbt1c2xCc_Xz_uHNN4zZRO0fncRkZ56Pzh25fusb52r4ckQOjm4DHPzogz5cXs8l1PL2_upmMp3HJcknjpKBFlUqkudBVKXIqkINktBQZMm4MdgpViYUATLEAaqoiqyoupeQmFSwZkNNd7sq71zWGVi3c2tvupGKMiYTTtHtnQM52VOldCB6NWvl6qf1GUVDbQlRXiPoupGNHv9iybnVbO9t6XTf_Od7qBjd_R6vHp_HO8QXUKnSL
CitedBy_id crossref_primary_10_1007_s00373_023_02721_0
crossref_primary_10_1137_21M1437573
crossref_primary_10_1016_j_jctb_2023_02_004
crossref_primary_10_1016_j_aam_2020_102131
crossref_primary_10_1002_rsa_70000
crossref_primary_10_1002_rsa_70012
crossref_primary_10_1007_s00373_023_02633_z
crossref_primary_10_1007_s00373_022_02520_z
crossref_primary_10_1016_j_jctb_2022_06_002
crossref_primary_10_4153_S0008439521001004
crossref_primary_10_1016_j_disc_2018_08_003
crossref_primary_10_1017_S0963548322000104
crossref_primary_10_1016_j_ejc_2023_103750
crossref_primary_10_1016_j_disc_2022_113093
crossref_primary_10_1016_j_ejc_2023_103890
crossref_primary_10_1002_jgt_22796
crossref_primary_10_1007_s00026_025_00778_7
crossref_primary_10_1016_j_disc_2021_112306
crossref_primary_10_1002_rsa_20945
crossref_primary_10_1016_j_disc_2023_113779
crossref_primary_10_1016_j_disc_2021_112765
crossref_primary_10_1016_j_disc_2020_112115
crossref_primary_10_3103_S1055134419030039
Cites_doi 10.2298/AADM160411008B
10.1016/j.ejc.2013.02.007
10.1137/S0097539793250767
10.1002/rsa.20411
10.1016/j.disc.2016.05.012
10.1006/jctb.1999.1910
10.1007/s00493-015-3070-6
10.1002/rsa.3240070305
10.1017/S0963548301004758
10.1016/j.ic.2014.12.018
10.1002/0471722154
10.1016/j.disc.2012.11.011
10.1002/(SICI)1097-0118(199906)31:2<149::AID-JGT8>3.0.CO;2-#
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
– notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/rsa.20811
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1098-2418
EndPage 664
ExternalDocumentID 10_1002_rsa_20811
RSA20811
Genre article
GrantInformation_xml – fundername: Illinois Distinguished Fellowship
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XSW
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2971-3b1bd57e196adc6916e40721c68e24ffe68e0dceb60e5eb01fdb8dd47774f5623
IEDL.DBID DRFUL
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470931400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1042-9832
IngestDate Fri Jul 25 12:09:48 EDT 2025
Tue Nov 18 19:44:30 EST 2025
Sat Nov 29 02:48:13 EST 2025
Wed Jan 22 16:48:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2971-3b1bd57e196adc6916e40721c68e24ffe68e0dceb60e5eb01fdb8dd47774f5623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2226341598
PQPubID 1016429
PageCount 1
ParticipantIDs proquest_journals_2226341598
crossref_primary_10_1002_rsa_20811
crossref_citationtrail_10_1002_rsa_20811
wiley_primary_10_1002_rsa_20811_RSA20811
PublicationCentury 2000
PublicationDate July 2019
2019-07-00
20190701
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Hoboken
PublicationTitle Random structures & algorithms
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2010; 10
29
2000
2016; 339
2013; 34
1979; XXVI
1997; 26
2013; 313
2015; 243
2013; 42
1999; 77
1999; 31
2016; 36
2001; 10
1995; 7
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
V.G. Vizing (e_1_2_7_20_1); 29
P. Erdös (e_1_2_7_10_1) 1979
References_xml – volume: 10
  start-page: 73
  year: 2010
  end-page: 87
  article-title: Harmonious coloring of uniform hypergraphs
  publication-title: Applic. Anal. Disc. Math.
– volume: 313
  start-page: 517
  year: 2013
  end-page: 539
  article-title: Colorings of plane graphs: a survey
  publication-title: Disc. Math.
– volume: 26
  start-page: 350
  issue: 2
  year: 1997
  end-page: 368
  article-title: Randomized distributed edge coloring via an extension of the Chernoff‐Hoeffding bounds
  publication-title: SIAM J. Comput
– volume: 243
  start-page: 263
  year: 2015
  end-page: 280
  article-title: Distributed coloring algorithms for triangle‐free graphs
  publication-title: Inform. Comput.
– volume: 29
  start-page: 3
  end-page: 10
  article-title: (Russian), [Vertex colorings with given colors]
  publication-title: Metody Diskret. Analiz.
– year: 2000
– volume: 339
  start-page: 2680
  year: 2016
  end-page: 2692
  article-title: The asymptotic behavior of the correspondence chromatic number
  publication-title: Disc. Math.
– volume: XXVI
  start-page: 125
  year: 1979
  end-page: 157
– volume: 7
  start-page: 269
  issue: 3
  year: 1995
  end-page: 271
  article-title: On the independence number of sparse graphs
  publication-title: Rand. Struct. Algor.
– volume: 10
  start-page: 345
  year: 2001
  end-page: 347
  article-title: A note on vertex list colouring
  publication-title: Combin. Prob. Comput.
– volume: 31
  start-page: 149
  year: 1999
  end-page: 153
  article-title: The list colouring constants
  publication-title: J. Graph Theory
– volume: 77
  start-page: 73
  year: 1999
  end-page: 82
  article-title: Coloring graphs with sparse neighborhoods
  publication-title: J. Comb. Theory, Ser.
– volume: 34
  start-page: 1019
  issue: 6
  year: 2013
  end-page: 1027
  article-title: Acyclic edge‐coloring using entropy compression
  publication-title: Eur. J. Combin.
– volume: 42
  start-page: 214
  issue: 2
  year: 2013
  end-page: 225
  article-title: New approach to nonrepetitive sequences
  publication-title: Rand. Struct. Alg.
– volume: 36
  start-page: 661
  year: 2016
  end-page: 686
  article-title: Nonrepetitive colouring via entropy compression
  publication-title: Combinatorica
– ident: e_1_2_7_4_1
  doi: 10.2298/AADM160411008B
– ident: e_1_2_7_8_1
– start-page: 125
  volume-title: Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium
  year: 1979
  ident: e_1_2_7_10_1
– ident: e_1_2_7_9_1
  doi: 10.1016/j.ejc.2013.02.007
– ident: e_1_2_7_15_1
  doi: 10.1137/S0097539793250767
– ident: e_1_2_7_13_1
– ident: e_1_2_7_11_1
  doi: 10.1002/rsa.20411
– ident: e_1_2_7_14_1
– ident: e_1_2_7_5_1
  doi: 10.1016/j.disc.2016.05.012
– ident: e_1_2_7_19_1
– ident: e_1_2_7_2_1
  doi: 10.1006/jctb.1999.1910
– volume: 29
  start-page: 3
  ident: e_1_2_7_20_1
  article-title: (Russian), [Vertex colorings with given colors]
  publication-title: Metody Diskret. Analiz.
– ident: e_1_2_7_7_1
  doi: 10.1007/s00493-015-3070-6
– ident: e_1_2_7_18_1
  doi: 10.1002/rsa.3240070305
– ident: e_1_2_7_12_1
  doi: 10.1017/S0963548301004758
– ident: e_1_2_7_16_1
  doi: 10.1016/j.ic.2014.12.018
– ident: e_1_2_7_3_1
  doi: 10.1002/0471722154
– ident: e_1_2_7_6_1
  doi: 10.1016/j.disc.2012.11.011
– ident: e_1_2_7_17_1
  doi: 10.1002/(SICI)1097-0118(199906)31:2<149::AID-JGT8>3.0.CO;2-#
SSID ssj0007323
Score 2.4637992
Snippet The aim of this note is twofold. On the one hand, we present a streamlined version of Molloy's new proof of the bound χ(G)≤(1+o(1))Δ(G)/lnΔ(G) for...
The aim of this note is twofold. On the one hand, we present a streamlined version of Molloy's new proof of the bound for triangle‐free graphs G , avoiding the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 653
SubjectTerms Coloring
DP‐coloring
entropy compression
Graph coloring
list coloring
Local Lemma
triangle‐free graphs
Title The Johansson‐Molloy theorem for DP‐coloring
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frsa.20811
https://www.proquest.com/docview/2226341598
Volume 54
WOSCitedRecordID wos000470931400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1098-2418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007323
  issn: 1042-9832
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1K60EPfovVKkE8eAlNtkk2i6diLSJtKdVCbyH7ERS0laYK3vwJ_kZ_ibPZJFVQELwkIUyyYfJm5rHsvAU4lZj1fOl4tucpPFBX2LGrhVyFyyUNZUyNzmyPDgbhZMKGFTgvemGMPkQ54aYjI8vXOsBjnjaXoqHzVMsGhbqvt0YQt14Vap1Rd9wrEzFtEbO-3iM2Q-QWwkIOaZYPfy9HS475lalmpaa78a-P3IT1nGFabQOJLaio6Tas9Ut51nQHHASHdT27wzKFdPvj7b2PaJi9Wqar8dFCImt1hnhfS1rrib9dGHcvby-u7HzrBFsQRl27xdHVPlUYX7EUAXJAlSmhiSBUxEsShWdHCsUDR_mKO24ieSilR5ENJpoS7UF1OpuqfbC8mCEL4kRJLOdu7PJYKkFoRl1CFrA6nBUejESuK663t3iIjCIyidAJUeaEOpyUpk9GTOMno0bxG6I8ntIIWUyA9dZnIQ6XOfz3F0Sjm3Z2cfB300NYRSbEzDrcBlQX82d1BCviZXGfzo9zYH0CrorQ5Q
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1KK6gHv8Vq1SAevIQm6SabBS_FWqqmpdQWegvJ7gYFbaWpgjd_gr_RX-JsvqqgIHhJQphkw-TNzmPYeQtwKnDWs4VBdEIkHqjJ9cBUQq7cDAV1RUBTnVmP9nrueMz6JTjPe2FSfYii4KYiI5mvVYCrgnR9oRo6i5VukKsaeysEYWSXodIatEdeMRPThpUusCeWzhC6ubKQYdWLh7_nowXJ_EpVk1zTXv_fV27AWsYxtWYKik0oyckWrHYLgdZ4GwyEh3Y9vcNEhYT74-29i3iYvmppX-OjhlRWa_XxvhK1VqW_HRi1L4cXHT3bPEHnFqOm3gjR2TaVGGGB4A6yQJlooXHHlRaJIolnQ3AZOoa0ZWiYkQhdIQhFPhgpUrQL5cl0IvdAIwFDHhRaUmBCNwMzDITkFk3Ii8scVoWz3IU-z5TF1QYXD36qiWz56AQ_cUIVTgrTp1RO4yejWv4f_CyiYh95jIMZ12YuDpd4_PcX-IPbZnKx_3fTY1juDLue7131bg5gBXkRS1fl1qA8nz3LQ1jiL_P7eHaUoewTOVrU1Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7DieiDd3E6tYgPvpS1Wdo04MtwFi_bGNPB3kKbpCjoNtYp-OZP8Df6Szxpuk5BQfClLeW0KV_P5SPkfEHoRELW86RDbEIUHKgr7MjVQq7CjSUNZESNzmyLdjrBYMC6JXQ264Ux-hDFhJuOjCxf6wBXY5nU5qqhk1TrBgW6sbdMPOZDWJabvbDfKjIxrWOzwJ5gm4HrzpSFHFwrHv5ej-Yk8ytVzWpNuPa_r1xHqznHtBrGKTZQSQ030Uq7EGhNt5AD7mFdj-6hUAHh_nh7b4M_jF4t09f4ZAGVtZpduK9FrfXU3zbqhxd355d2vnmCLTCjrl2PAWyPKoiwSAofWKDKtNCEHyhMkkTB2ZFCxb6jPBU7biLjQEpCgQ8mmhTtoIXhaKh2kUUiABfHWEko6G7kxpFUAtOMvATMZxV0OoOQi1xZXG9w8ciNJjLmAALPQKig48J0bOQ0fjKqzv4DzyMq5cBjfKi4HgtguAzx31_Ae7eN7GLv76ZHaKnbDHnrqnOzj5aBFjGzKLeKFqaTZ3WAFsXL9CGdHOZO9gkEANRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Johansson%E2%80%90Molloy+theorem+for+DP%E2%80%90coloring&rft.jtitle=Random+structures+%26+algorithms&rft.au=Bernshteyn%2C+Anton&rft.date=2019-07-01&rft.issn=1042-9832&rft.eissn=1098-2418&rft.volume=54&rft.issue=4&rft.spage=653&rft.epage=664&rft_id=info:doi/10.1002%2Frsa.20811&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rsa_20811
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1042-9832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1042-9832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1042-9832&client=summon