The Johansson‐Molloy theorem for DP‐coloring
The aim of this note is twofold. On the one hand, we present a streamlined version of Molloy's new proof of the bound χ(G)≤(1+o(1))Δ(G)/lnΔ(G) for triangle‐free graphs G, avoiding the technicalities of the entropy compression method and only using the usual “lopsided” Lovász Local Lemma (albeit...
Uloženo v:
| Vydáno v: | Random structures & algorithms Ročník 54; číslo 4; s. 653 - 664 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
John Wiley & Sons, Inc
01.07.2019
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 1042-9832, 1098-2418 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The aim of this note is twofold. On the one hand, we present a streamlined version of Molloy's new proof of the bound χ(G)≤(1+o(1))Δ(G)/lnΔ(G) for triangle‐free graphs G, avoiding the technicalities of the entropy compression method and only using the usual “lopsided” Lovász Local Lemma (albeit in a somewhat unusual setting). On the other hand, we extend Molloy's result to DP‐coloring (also known as correspondence coloring), a generalization of list coloring introduced recently by Dvořák and Postle. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1042-9832 1098-2418 |
| DOI: | 10.1002/rsa.20811 |