Enhancing Low‐Light Images: A Variation‐based Retinex with Modified Bilateral Total Variation and Tensor Sparse Coding

Low‐light conditions often result in the presence of significant noise and artifacts in captured images, which can be further exacerbated during the image enhancement process, leading to a decrease in visual quality. This paper aims to present an effective low‐light image enhancement model based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum Jg. 42; H. 7
Hauptverfasser: Yang, Weipeng, Gao, Hongxia, Zou, Wenbin, Huang, Shasha, Chen, Hongsheng, Ma, Jianliang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Blackwell Publishing Ltd 01.10.2023
Schlagworte:
ISSN:0167-7055, 1467-8659
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low‐light conditions often result in the presence of significant noise and artifacts in captured images, which can be further exacerbated during the image enhancement process, leading to a decrease in visual quality. This paper aims to present an effective low‐light image enhancement model based on the variation Retinex model that successfully suppresses noise and artifacts while preserving image details. To achieve this, we propose a modified Bilateral Total Variation to better smooth out fine textures in the illuminance component while maintaining weak structures. Additionally, tensor sparse coding is employed as a regularization term to remove noise and artifacts from the reflectance component. Experimental results on extensive and challenging datasets demonstrate the effectiveness of the proposed method, exhibiting superior or comparable performance compared to state‐of‐the‐art approaches. Code, dataset and experimental results are available at https://github.com/YangWeipengscut/BTRetinex.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.14960