Some Convergence Properties for Weighted Sums of Martingale Difference Random Vectors
Let be an array of martingale difference random vectors and be an array of m × d matrices of real numbers. In this paper, the Marcinkiewicz–Zygmund type weak law of large numbers for maximal weighted sums of martingale difference random vectors is obtained with not necessarily finite p -th (1 < p...
Uloženo v:
| Vydáno v: | Acta mathematica Sinica. English series Ročník 40; číslo 4; s. 1127 - 1142 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 1439-8516, 1439-7617 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Let
be an array of
martingale difference random vectors and
be an array of
m
×
d
matrices of real numbers. In this paper, the Marcinkiewicz–Zygmund type weak law of large numbers for maximal weighted sums of martingale difference random vectors is obtained with not necessarily finite
p
-th (1 <
p
< 2) moments. Moreover, the complete convergence and strong law of large numbers are established under some mild conditions. An application to multivariate simple linear regression model is also provided. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1439-8516 1439-7617 |
| DOI: | 10.1007/s10114-023-1364-y |