Some Convergence Properties for Weighted Sums of Martingale Difference Random Vectors

Let be an array of martingale difference random vectors and be an array of m × d matrices of real numbers. In this paper, the Marcinkiewicz–Zygmund type weak law of large numbers for maximal weighted sums of martingale difference random vectors is obtained with not necessarily finite p -th (1 < p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series Jg. 40; H. 4; S. 1127 - 1142
Hauptverfasser: Wu, Yi, Wang, Xue Jun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2024
Springer Nature B.V
Schlagworte:
ISSN:1439-8516, 1439-7617
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let be an array of martingale difference random vectors and be an array of m × d matrices of real numbers. In this paper, the Marcinkiewicz–Zygmund type weak law of large numbers for maximal weighted sums of martingale difference random vectors is obtained with not necessarily finite p -th (1 < p < 2) moments. Moreover, the complete convergence and strong law of large numbers are established under some mild conditions. An application to multivariate simple linear regression model is also provided.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-023-1364-y