A New Method for LDPC Blind Recognition Over a Candidate Set Using Kullback-Leibler Divergence
Blind recognition plays a very important role in both applications such as grant-free access by Internet of Things (IoT) devices and non-cooperative communication scenarios. Therefore, it has received more and more attention in recent years. In this letter, a new scheme is proposed to resolve the pr...
Gespeichert in:
| Veröffentlicht in: | IEEE communications letters Jg. 28; H. 5; S. 964 - 968 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1089-7798, 1558-2558 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Blind recognition plays a very important role in both applications such as grant-free access by Internet of Things (IoT) devices and non-cooperative communication scenarios. Therefore, it has received more and more attention in recent years. In this letter, a new scheme is proposed to resolve the problem of blind low-density parity-check (LDPC) encoder recognition over a known candidate set. First, we measure the relationship between the received vectors and the rows of the parity-check matrices in the candidate set, which can be represented by different distributions depending on whether the parity-check relationships are satisfied or not. Then, we classify the LDPC encoder over the candidate set by employing Kullback-Leibler (KL) divergence metric for measuring the distance between these two distributions. Simulations show that the proposed algorithm provides better recognition performance. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1089-7798 1558-2558 |
| DOI: | 10.1109/LCOMM.2024.3373074 |