First-order expansions for eigenvalues and eigenfunctions in periodic homogenization

For a family of elliptic operators with periodically oscillating coefficients, $-{\rm div}(A(\cdot /\varepsilon )\nabla )$ with tiny ε > 0, we comprehensively study the first-order expansions of eigenvalues and eigenfunctions (eigenspaces) for both the Dirichlet and Neumann problems in bounded, s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics Jg. 150; H. 5; S. 2189 - 2215
1. Verfasser: Zhuge, Jinping
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Edinburgh, UK Royal Society of Edinburgh Scotland Foundation 01.10.2020
Cambridge University Press
Schlagworte:
ISSN:0308-2105, 1473-7124
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a family of elliptic operators with periodically oscillating coefficients, $-{\rm div}(A(\cdot /\varepsilon )\nabla )$ with tiny ε > 0, we comprehensively study the first-order expansions of eigenvalues and eigenfunctions (eigenspaces) for both the Dirichlet and Neumann problems in bounded, smooth and strictly convex domains (or more general domains of finite type). A new first-order correction term is introduced to derive the expansion of eigenfunctions in L2 or $H^1_{\rm loc}$. Our results rely on the recent progress on the homogenization of boundary layer problems.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0308-2105
1473-7124
DOI:10.1017/prm.2019.8