First-order expansions for eigenvalues and eigenfunctions in periodic homogenization

For a family of elliptic operators with periodically oscillating coefficients, $-{\rm div}(A(\cdot /\varepsilon )\nabla )$ with tiny ε > 0, we comprehensively study the first-order expansions of eigenvalues and eigenfunctions (eigenspaces) for both the Dirichlet and Neumann problems in bounded, s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics Ročník 150; číslo 5; s. 2189 - 2215
Hlavní autor: Zhuge, Jinping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Edinburgh, UK Royal Society of Edinburgh Scotland Foundation 01.10.2020
Cambridge University Press
Témata:
ISSN:0308-2105, 1473-7124
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:For a family of elliptic operators with periodically oscillating coefficients, $-{\rm div}(A(\cdot /\varepsilon )\nabla )$ with tiny ε > 0, we comprehensively study the first-order expansions of eigenvalues and eigenfunctions (eigenspaces) for both the Dirichlet and Neumann problems in bounded, smooth and strictly convex domains (or more general domains of finite type). A new first-order correction term is introduced to derive the expansion of eigenfunctions in L2 or $H^1_{\rm loc}$. Our results rely on the recent progress on the homogenization of boundary layer problems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0308-2105
1473-7124
DOI:10.1017/prm.2019.8