Adaptive Weighting Push-SUM for Decentralized Optimization With Statistical Diversity

Statistical diversity is a property of data distribution and can hinder the optimization of a decentralized network. However, the theoretical limitations of the Push-SUM protocol reduce the performance in handling the statistical diversity of optimization algorithms based on it. In this article, we...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on control of network systems Ročník 12; číslo 3; s. 2337 - 2349
Hlavní autoři: Zhou, Yiming, Cheng, Yifei, Xu, Linli, Chen, Enhong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.09.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2325-5870, 2372-2533
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Statistical diversity is a property of data distribution and can hinder the optimization of a decentralized network. However, the theoretical limitations of the Push-SUM protocol reduce the performance in handling the statistical diversity of optimization algorithms based on it. In this article, we theoretically and empirically reduce the negative impact of statistical diversity on decentralized optimization using the Push-SUM protocol. Specifically, we propose the adaptive weighting Push-SUM protocol, a theoretical generalization of the original Push-SUM protocol, where the latter is a special case of the former. Our theoretical analysis shows that, with sufficient communication, the upper bound on the consensus distance for the new protocol reduces to <inline-formula><tex-math notation="LaTeX">O(1/N)</tex-math></inline-formula>, whereas it remains at <inline-formula><tex-math notation="LaTeX">O(1)</tex-math></inline-formula> for the Push-SUM protocol. We adopt stochastic gradient descent (SGD) and momentum SGD on the new protocol and prove that the convergence rate of these two algorithms to statistical diversity is <inline-formula><tex-math notation="LaTeX">O(N/T)</tex-math></inline-formula> on the new protocol, while it is <inline-formula><tex-math notation="LaTeX">O(Nd/T)</tex-math></inline-formula> on the Push-SUM protocol, where <inline-formula><tex-math notation="LaTeX">d</tex-math></inline-formula> is the parameter size of the training model. To address statistical diversity in practical applications of the new protocol, we develop the Moreau weighting method for its generalized weight matrix definition. This method, derived from the Moreau envelope, is an approximate optimization of the distance penalty of the Moreau envelope. We verify that the adaptive weighting Push-SUM protocol is practically more efficient than the Push-SUM protocol via deep learning experiments.
AbstractList Statistical diversity is a property of data distribution and can hinder the optimization of a decentralized network. However, the theoretical limitations of the Push-SUM protocol reduce the performance in handling the statistical diversity of optimization algorithms based on it. In this article, we theoretically and empirically reduce the negative impact of statistical diversity on decentralized optimization using the Push-SUM protocol. Specifically, we propose the adaptive weighting Push-SUM protocol, a theoretical generalization of the original Push-SUM protocol, where the latter is a special case of the former. Our theoretical analysis shows that, with sufficient communication, the upper bound on the consensus distance for the new protocol reduces to [Formula Omitted], whereas it remains at [Formula Omitted] for the Push-SUM protocol. We adopt stochastic gradient descent (SGD) and momentum SGD on the new protocol and prove that the convergence rate of these two algorithms to statistical diversity is [Formula Omitted] on the new protocol, while it is [Formula Omitted] on the Push-SUM protocol, where [Formula Omitted] is the parameter size of the training model. To address statistical diversity in practical applications of the new protocol, we develop the Moreau weighting method for its generalized weight matrix definition. This method, derived from the Moreau envelope, is an approximate optimization of the distance penalty of the Moreau envelope. We verify that the adaptive weighting Push-SUM protocol is practically more efficient than the Push-SUM protocol via deep learning experiments.
Statistical diversity is a property of data distribution and can hinder the optimization of a decentralized network. However, the theoretical limitations of the Push-SUM protocol reduce the performance in handling the statistical diversity of optimization algorithms based on it. In this article, we theoretically and empirically reduce the negative impact of statistical diversity on decentralized optimization using the Push-SUM protocol. Specifically, we propose the adaptive weighting Push-SUM protocol, a theoretical generalization of the original Push-SUM protocol, where the latter is a special case of the former. Our theoretical analysis shows that, with sufficient communication, the upper bound on the consensus distance for the new protocol reduces to <inline-formula><tex-math notation="LaTeX">O(1/N)</tex-math></inline-formula>, whereas it remains at <inline-formula><tex-math notation="LaTeX">O(1)</tex-math></inline-formula> for the Push-SUM protocol. We adopt stochastic gradient descent (SGD) and momentum SGD on the new protocol and prove that the convergence rate of these two algorithms to statistical diversity is <inline-formula><tex-math notation="LaTeX">O(N/T)</tex-math></inline-formula> on the new protocol, while it is <inline-formula><tex-math notation="LaTeX">O(Nd/T)</tex-math></inline-formula> on the Push-SUM protocol, where <inline-formula><tex-math notation="LaTeX">d</tex-math></inline-formula> is the parameter size of the training model. To address statistical diversity in practical applications of the new protocol, we develop the Moreau weighting method for its generalized weight matrix definition. This method, derived from the Moreau envelope, is an approximate optimization of the distance penalty of the Moreau envelope. We verify that the adaptive weighting Push-SUM protocol is practically more efficient than the Push-SUM protocol via deep learning experiments.
Author Xu, Linli
Cheng, Yifei
Chen, Enhong
Zhou, Yiming
Author_xml – sequence: 1
  givenname: Yiming
  orcidid: 0009-0000-3151-7406
  surname: Zhou
  fullname: Zhou, Yiming
  email: zym2019@mail.ustc.edu.cn
  organization: Anhui Province Key Laboratory of Big Data Analysis and Application, University of Science and Technology of China, Hefei, China
– sequence: 2
  givenname: Yifei
  orcidid: 0000-0003-3859-2921
  surname: Cheng
  fullname: Cheng, Yifei
  email: yfcheng.ifc@gmail.com
  organization: Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
– sequence: 3
  givenname: Linli
  orcidid: 0000-0003-0227-3793
  surname: Xu
  fullname: Xu, Linli
  email: linlixu@ustc.edu.cn
  organization: Anhui Province Key Laboratory of Big Data Analysis and Application, University of Science and Technology of China, Hefei, China
– sequence: 4
  givenname: Enhong
  orcidid: 0000-0002-4835-4102
  surname: Chen
  fullname: Chen, Enhong
  email: cheneh@ustc.edu.cn
  organization: Anhui Province Key Laboratory of Big Data Analysis and Application, University of Science and Technology of China, Hefei, China
BookMark eNp9kEtrAjEUhUOxUGv9AYUuAl2PzcPMJEvRvsDWgorLEDMZjYwzNokF_fXNVBeli67uvXDOuZzvGrSqujIA3GLUwxiJh9nwfdojiLAeZWlKibgAbUIzkhBGaavZCUsYz9AV6Hq_QQhhwuJN22A-yNUu2C8DF8au1sFWK_ix9-tkOn-DRe3gyGhTBadKezQ5nETt1h5VsHUFFzas4TTEwwerVQlHMcd5Gw434LJQpTfd8-yA-dPjbPiSjCfPr8PBONFEpCHRuVAoW_YpKxTBSpAc5whrwQpiMlTkhqMlLYRWGukl1YRzhlWa9VMiOGJa0w64P-XuXP25Nz7ITb13VXwpY2XKBeN9GlXZSaVd7b0zhdQ2_FSIvWwpMZINRtlglA1GecYYnfiPc-fsVrnDv567k8caY37pBccpR_Qbl6yAXQ
CODEN ITCNAY
CitedBy_id crossref_primary_10_15622_ia_24_4_2
Cites_doi 10.1109/TCNS.2023.3338236
10.1287/moor.17.3.670
10.1109/SFCS.2003.1238221
10.1109/TCNS.2024.3354875
10.1016/0041-5553(64)90137-5
10.1109/TCNS.2023.3281561
10.1109/TAC.2014.2364096
10.1109/TNSE.2022.3225229
10.1186/s13634-018-0596-y
10.1137/16M1084316
10.1007/s10107-018-01357-w
10.1016/s0294-1449(17)30036-7
10.1109/TAC.2017.2737582
10.1109/TAC.2017.2648041
10.1109/CVPR.2016.90
10.1109/TAC.2020.2981035
10.1137/14096668X
10.1109/TAC.2020.2972824
10.1109/TAC.2016.2529285
10.1109/LCSYS.2020.3006420
10.1109/LCSYS.2018.2834316
10.1109/5.726791
10.1109/TCNS.2023.3272220
10.1109/JPROC.2020.3024266
10.1109/LCSYS.2021.3090652
10.1109/CDC.2015.7402509
10.1109/TAC.2017.2672698
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCNS.2025.3566329
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2372-2533
EndPage 2349
ExternalDocumentID 10_1109_TCNS_2025_3566329
10981680
Genre orig-research
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-cd9a07b435fa21a92d1d01c95f2e70fde80b3f9cac0cb3c28851a674629805cc3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001579032800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2325-5870
IngestDate Mon Oct 13 19:10:35 EDT 2025
Tue Nov 18 21:32:52 EST 2025
Sat Nov 29 07:23:43 EST 2025
Wed Oct 01 07:05:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-cd9a07b435fa21a92d1d01c95f2e70fde80b3f9cac0cb3c28851a674629805cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0227-3793
0000-0002-4835-4102
0000-0003-3859-2921
0009-0000-3151-7406
PQID 3253895843
PQPubID 2040410
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TCNS_2025_3566329
crossref_primary_10_1109_TCNS_2025_3566329
proquest_journals_3253895843
ieee_primary_10981680
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on control of network systems
PublicationTitleAbbrev TCNS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref34
ref15
ref37
ref14
ref11
ref33
ref10
ref2
ref1
ref17
ref16
ref19
ref18
Li (ref31) 2021
Yu (ref28) 2019
Dinh (ref29) 2020; 33
ref23
ref26
ref25
ref22
Krizhevsky (ref36) 2009
Lin (ref30) 2018; 18
Yosida (ref32) 1980; 123
ref27
ref8
ref7
Jiang (ref20) 2021; 34
ref9
Assran (ref13) 2019
ref4
ref3
ref6
ref5
Moreau (ref21) 1962; 255
Koloskova (ref24) 2021; 34
References_xml – ident: ref1
  doi: 10.1109/TCNS.2023.3338236
– volume: 255
  start-page: 2897
  year: 1962
  ident: ref21
  article-title: Fonctions convexes duales et points proximaux dans un espace hilbertien
  publication-title: C. R. Acad. Sci. Paris
– ident: ref33
  doi: 10.1287/moor.17.3.670
– ident: ref5
  doi: 10.1109/SFCS.2003.1238221
– ident: ref4
  doi: 10.1109/TCNS.2024.3354875
– ident: ref27
  doi: 10.1016/0041-5553(64)90137-5
– ident: ref3
  doi: 10.1109/TCNS.2023.3281561
– ident: ref6
  doi: 10.1109/TAC.2014.2364096
– ident: ref16
  doi: 10.1109/TNSE.2022.3225229
– start-page: 6357
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2021
  ident: ref31
  article-title: Ditto: Fair and robust federated learning through personalization
– ident: ref11
  doi: 10.1186/s13634-018-0596-y
– start-page: 344
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2019
  ident: ref13
  article-title: Stochastic gradient push for distributed deep learning
– ident: ref23
  doi: 10.1137/16M1084316
– volume: 34
  start-page: 11422
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  year: 2021
  ident: ref24
  article-title: An improved analysis of gradient tracking for decentralized machine learning
– ident: ref18
  doi: 10.1007/s10107-018-01357-w
– volume: 34
  start-page: 20185
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  year: 2021
  ident: ref20
  article-title: Asynchronous decentralized online learning
– ident: ref34
  doi: 10.1016/s0294-1449(17)30036-7
– ident: ref25
  doi: 10.1109/TAC.2017.2737582
– ident: ref7
  doi: 10.1109/TAC.2017.2648041
– ident: ref37
  doi: 10.1109/CVPR.2016.90
– ident: ref19
  doi: 10.1109/TAC.2020.2981035
– ident: ref15
  doi: 10.1137/14096668X
– ident: ref9
  doi: 10.1109/TAC.2020.2972824
– ident: ref12
  doi: 10.1109/TAC.2016.2529285
– ident: ref26
  doi: 10.1109/LCSYS.2020.3006420
– ident: ref8
  doi: 10.1109/LCSYS.2018.2834316
– ident: ref35
  doi: 10.1109/5.726791
– ident: ref2
  doi: 10.1109/TCNS.2023.3272220
– volume: 123
  volume-title: Functional Analysis
  year: 1980
  ident: ref32
– year: 2009
  ident: ref36
  article-title: Learning multiple layers of features from tiny images
– start-page: 7184
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2019
  ident: ref28
  article-title: On the linear speedup analysis of communication efficient momentum SGD for distributed non-convex optimization
– ident: ref10
  doi: 10.1109/JPROC.2020.3024266
– ident: ref17
  doi: 10.1109/LCSYS.2021.3090652
– ident: ref22
  doi: 10.1109/CDC.2015.7402509
– ident: ref14
  doi: 10.1109/TAC.2017.2672698
– volume: 33
  start-page: 21394
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  year: 2020
  ident: ref29
  article-title: Personalized federated learning with Moreau envelopes
– volume: 18
  start-page: 7854
  issue: 1
  year: 2018
  ident: ref30
  article-title: Catalyst acceleration for first-order convex optimization: From theory to practice
  publication-title: J. Mach. Learn. Res.
SSID ssj0001255873
Score 2.3442137
Snippet Statistical diversity is a property of data distribution and can hinder the optimization of a decentralized network. However, the theoretical limitations of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2337
SubjectTerms Algorithms
Analytical models
Communication networks
Control systems
Convergence
directed decentralized optimization
distributed algorithms/control
learning
Network systems
Optimization
Protocols
Robustness
Training
Upper bound
Upper bounds
Vectors
Weighting methods
Title Adaptive Weighting Push-SUM for Decentralized Optimization With Statistical Diversity
URI https://ieeexplore.ieee.org/document/10981680
https://www.proquest.com/docview/3253895843
Volume 12
WOSCitedRecordID wos001579032800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2372-2533
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001255873
  issn: 2325-5870
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86POjBz4nTKTl4EjrTpG2S49gcHmQO3NhupU1SNtBt7MODf70vaaYDUfBWyktb3q95-eXlfSB0C2tcYoQWgVLcBBEXOshZYd0cgpvEJg7kDukn3u2K0Uj2fLK6y4UxxrjgM9Owl-4sX8_U2rrKYIZL2yYCdui7nCdlstaWQyWOBWf-5BJE7_ut7gvsAGncYEBamGOR32uPa6bywwK7ZaVz9M8POkaHnj_iZgn4Cdox01N0sFVV8AwNmjqbWyuGh87vCTdxb70cB2BBMXBU3DY-JHPyYTR-Btk3n42Jh5PVGFsC6uo3w4vam7iNKhp0Hvqtx8B3TwgUlckqUFpmhOdAh4qMhpmkOtQkVDIuqOGk0EYQQEWqTBGVM0UFcK8s4VFCpSCxUuwcVaazqblAuKA5TQRlmnEThVGYF5xoGcXC5ElR0LiGyEavqfKlxW2Hi9fUbTGITC0UqYUi9VDU0N3XkHlZV-Mv4arV_ZZgqfYaqm_QS_3UW6aMgg2XwKvY5S_DrtC-fXoZKVZHldViba7RnnoH3S5u3F_1CeY7y4s
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6igvrgXZzXPPgkdKZJ2ySP4gXFWQU3trfSJikb6DZ28cFf70ma6UAUfCvlhJTzNSdfTs4FoTPY4xIjtAiU4iaIuNBBwUrr5hDcJDZxoHBIN3iaik5HPvtkdZcLY4xxwWembh_dXb4eqKl1lcEKl7ZNBJzQl-IooqRK15pzqcSx4MzfXYLwRfMqfYEzII3rDGgLczzye_dx7VR-2GC3sdxu_POTNtG6Z5D4soJ8Cy2Y_jZam6sruINalzofWjuG287zCS_x83TcDcCGYmCp-Nr4oMzeh9H4CWTffD4mbvcmXWwpqKvgDBNdzyI3dlHr9qZ5dRf4_gmBojKZBErLnPACCFGZ0zCXVIeahErGJTWclNoIArhIlSuiCqaoAPaVJzxKqBQkVortocX-oG_2ES5pQRNBmWbcRGEUFiUnWkaxMEVSljSuITLTa6Z8cXHb4-I1c4cMIjMLRWahyDwUNXT-NWRYVdb4S3jX6n5OsFJ7DR3N0Mv84htnjIIVl8Cs2MEvw07Ryl3zsZE17tOHQ7RqZ6rixo7Q4mQ0NcdoWb2Dnkcn7g_7BKR-ztI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Weighting+Push-SUM+for+Decentralized+Optimization+With+Statistical+Diversity&rft.jtitle=IEEE+transactions+on+control+of+network+systems&rft.au=Zhou%2C+Yiming&rft.au=Cheng%2C+Yifei&rft.au=Xu%2C+Linli&rft.au=Chen%2C+Enhong&rft.date=2025-09-01&rft.issn=2325-5870&rft.eissn=2372-2533&rft.volume=12&rft.issue=3&rft.spage=2337&rft.epage=2349&rft_id=info:doi/10.1109%2FTCNS.2025.3566329&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCNS_2025_3566329
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2325-5870&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2325-5870&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2325-5870&client=summon