Conditional Fourier-Feynman transform given infinite dimensional conditioning function on abstract Wiener space
We study a conditional Fourier-Feynman transform (CFFT) of functionals on an abstract Wiener space ( H , B , v ). An infinite dimensional conditioning function is used to define the CFFT. To do this, we first present a short survey of the conditional Wiener integral concerning the topic of this pape...
Uloženo v:
| Vydáno v: | Czechoslovak mathematical journal Ročník 73; číslo 3; s. 849 - 868 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 0011-4642, 1572-9141 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study a conditional Fourier-Feynman transform (CFFT) of functionals on an abstract Wiener space (
H
,
B
,
v
). An infinite dimensional conditioning function is used to define the CFFT. To do this, we first present a short survey of the conditional Wiener integral concerning the topic of this paper. We then establish evaluation formulas for the conditional Wiener integral on the abstract Wiener space
B
. Using the evaluation formula, we next provide explicit formulas for CFFTs of functionals in the Kallianpur and Bromley Fresnel class
ℱ
(
B
) and we finally investigate some Fubini theorems involving CFFT. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0011-4642 1572-9141 |
| DOI: | 10.21136/CMJ.2023.0310-22 |