Conditional Fourier-Feynman transform given infinite dimensional conditioning function on abstract Wiener space

We study a conditional Fourier-Feynman transform (CFFT) of functionals on an abstract Wiener space ( H , B , v ). An infinite dimensional conditioning function is used to define the CFFT. To do this, we first present a short survey of the conditional Wiener integral concerning the topic of this pape...

Full description

Saved in:
Bibliographic Details
Published in:Czechoslovak mathematical journal Vol. 73; no. 3; pp. 849 - 868
Main Authors: Choi, Jae Gil, Shim, Sang Kil
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2023
Springer Nature B.V
Subjects:
ISSN:0011-4642, 1572-9141
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study a conditional Fourier-Feynman transform (CFFT) of functionals on an abstract Wiener space ( H , B , v ). An infinite dimensional conditioning function is used to define the CFFT. To do this, we first present a short survey of the conditional Wiener integral concerning the topic of this paper. We then establish evaluation formulas for the conditional Wiener integral on the abstract Wiener space B . Using the evaluation formula, we next provide explicit formulas for CFFTs of functionals in the Kallianpur and Bromley Fresnel class ℱ ( B ) and we finally investigate some Fubini theorems involving CFFT.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0011-4642
1572-9141
DOI:10.21136/CMJ.2023.0310-22