TransAttUnet: Multi-Level Attention-Guided U-Net With Transformer for Medical Image Segmentation

Accurate segmentation of organs or lesions from medical images is crucial for reliable diagnosis of diseases and organ morphometry. In recent years, convolutional encoder-decoder solutions have achieved substantial progress in the field of automatic medical image segmentation. Due to the inherent bi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on emerging topics in computational intelligence Ročník 8; číslo 1; s. 55 - 68
Hlavní autori: Chen, Bingzhi, Liu, Yishu, Zhang, Zheng, Lu, Guangming, Kong, Adams Wai Kin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2471-285X, 2471-285X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Accurate segmentation of organs or lesions from medical images is crucial for reliable diagnosis of diseases and organ morphometry. In recent years, convolutional encoder-decoder solutions have achieved substantial progress in the field of automatic medical image segmentation. Due to the inherent bias in the convolution operations, prior models mainly focus on local visual cues formed by the neighboring pixels, but fail to fully model the long-range contextual dependencies. In this article, we propose a novel Transformer-based Attention Guided Network called TransAttUnet , in which the multi-level guided attention and multi-scale skip connection are designed to jointly enhance the performance of the semantical segmentation architecture. Inspired by Transformer, the self-aware attention (SAA) module with Transformer Self Attention (TSA) and Global Spatial Attention (GSA) is incorporated into TransAttUnet to effectively learn the non-local interactions among encoder features. Moreover, we also use additional multi-scale skip connections between decoder blocks to aggregate the upsampled features with different semantic scales. In this way, the representation ability of multi-scale context information is strengthened to generate discriminative features. Benefitting from these complementary components, the proposed TransAttUnet can effectively alleviate the loss of fine details caused by the stacking of convolution layers and the consecutive sampling operations, finally improving the segmentation quality of medical images. Extensive experiments were conducted on multiple medical image segmentation datasets from various imaging modalities, which demonstrate that the proposed method consistently outperforms the existing state-of-the-art methods.
AbstractList Accurate segmentation of organs or lesions from medical images is crucial for reliable diagnosis of diseases and organ morphometry. In recent years, convolutional encoder-decoder solutions have achieved substantial progress in the field of automatic medical image segmentation. Due to the inherent bias in the convolution operations, prior models mainly focus on local visual cues formed by the neighboring pixels, but fail to fully model the long-range contextual dependencies. In this article, we propose a novel Transformer-based Attention Guided Network called TransAttUnet , in which the multi-level guided attention and multi-scale skip connection are designed to jointly enhance the performance of the semantical segmentation architecture. Inspired by Transformer, the self-aware attention (SAA) module with Transformer Self Attention (TSA) and Global Spatial Attention (GSA) is incorporated into TransAttUnet to effectively learn the non-local interactions among encoder features. Moreover, we also use additional multi-scale skip connections between decoder blocks to aggregate the upsampled features with different semantic scales. In this way, the representation ability of multi-scale context information is strengthened to generate discriminative features. Benefitting from these complementary components, the proposed TransAttUnet can effectively alleviate the loss of fine details caused by the stacking of convolution layers and the consecutive sampling operations, finally improving the segmentation quality of medical images. Extensive experiments were conducted on multiple medical image segmentation datasets from various imaging modalities, which demonstrate that the proposed method consistently outperforms the existing state-of-the-art methods.
Author Liu, Yishu
Zhang, Zheng
Lu, Guangming
Chen, Bingzhi
Kong, Adams Wai Kin
Author_xml – sequence: 1
  givenname: Bingzhi
  orcidid: 0000-0002-2497-6214
  surname: Chen
  fullname: Chen, Bingzhi
  email: chenbingzhi@m.scnu.edu.cn
  organization: School of Software, South China Normal University, Foshan, Guangdong, China
– sequence: 2
  givenname: Yishu
  orcidid: 0000-0003-0465-5381
  surname: Liu
  fullname: Liu, Yishu
  email: liuyishu@stu.hit.edu.cn
  organization: Shenzhen Medical Biometrics Perception and Analysis Engineering Laboratory, Harbin Institute of Technology, Shenzhen, China
– sequence: 3
  givenname: Zheng
  orcidid: 0000-0003-1470-6998
  surname: Zhang
  fullname: Zhang, Zheng
  email: zhengzhang@hit.edu.cn
  organization: Shenzhen Medical Biometrics Perception and Analysis Engineering Laboratory, Harbin Institute of Technology, Shenzhen, China
– sequence: 4
  givenname: Guangming
  orcidid: 0000-0003-1578-2634
  surname: Lu
  fullname: Lu, Guangming
  email: luguangm@hit.edu.cn
  organization: Shenzhen Medical Biometrics Perception and Analysis Engineering Laboratory, Harbin Institute of Technology, Shenzhen, China
– sequence: 5
  givenname: Adams Wai Kin
  orcidid: 0000-0002-9728-9511
  surname: Kong
  fullname: Kong, Adams Wai Kin
  email: adamskon@ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
BookMark eNp9kEtPwkAUhScGExH5A8bFJK6L8-hj6o4QRRLQhRDdjdPpLQ4pLU6nJv57B8qCuHB1bm7Od-_JuUS9qq4AoWtKRpSS9G75sJzMRowwPuKcpDGLz1CfhQkNmIjeeyfzBRo2zYYQwtKI8ijso4-lVVUzdm5VgbvHi7Z0JpjDN5TYL6Fypq6CaWtyyPEqeAaH34z7xAeqqO0WLPaCF5AbrUo826o14FdYbz2q9vAVOi9U2cDwqAO0evR5n4L5y3Q2Gc8DzdLYBUIlPlSehczn1BArmjCdcQ1UgKYiiwqd00yEghWcgLeIJAXBdaFZmBfA-ADddnd3tv5qoXFyU7e28i8lS6kgnIQx9S7RubStm8ZCIbXpcjqrTCkpkftK5aFSua9UHiv1KPuD7qzZKvvzP3TTQQYATgAWhjRN-S8fIITB
CODEN ITETCU
CitedBy_id crossref_primary_10_1109_TGRS_2024_3435963
crossref_primary_10_1109_JBHI_2024_3390241
crossref_primary_10_3390_s24144749
crossref_primary_10_1177_20552076241291306
crossref_primary_10_1016_j_visinf_2025_100268
crossref_primary_10_1007_s13042_024_02519_3
crossref_primary_10_1080_0954898X_2024_2323530
crossref_primary_10_1016_j_bspc_2024_106726
crossref_primary_10_1007_s12559_024_10304_1
crossref_primary_10_3390_jimaging10100239
crossref_primary_10_1007_s10489_025_06629_5
crossref_primary_10_1007_s11042_025_21003_w
crossref_primary_10_1109_JSTARS_2025_3549678
crossref_primary_10_1016_j_compbiomed_2024_108671
crossref_primary_10_1049_ipr2_70203
crossref_primary_10_1016_j_bspc_2025_107931
crossref_primary_10_3390_a17040168
crossref_primary_10_3390_math12223580
crossref_primary_10_1002_ima_70207
crossref_primary_10_3390_app14104233
crossref_primary_10_1002_ima_70167
crossref_primary_10_1109_ACCESS_2024_3353142
crossref_primary_10_1016_j_neucom_2025_131413
crossref_primary_10_1002_ima_23160
crossref_primary_10_1016_j_eswa_2025_128409
crossref_primary_10_1109_ACCESS_2024_3433612
crossref_primary_10_1016_j_eswa_2025_128801
crossref_primary_10_1016_j_cageo_2025_105999
crossref_primary_10_1016_j_compbiomed_2024_109259
crossref_primary_10_3390_s24031005
crossref_primary_10_1007_s00371_025_03874_0
crossref_primary_10_3390_diagnostics14020191
crossref_primary_10_1016_j_bspc_2025_107722
crossref_primary_10_1109_TMI_2024_3362879
crossref_primary_10_1007_s11517_024_03278_7
crossref_primary_10_1051_itmconf_20257601004
crossref_primary_10_1016_j_jksuci_2024_102218
crossref_primary_10_1109_ACCESS_2024_3365048
crossref_primary_10_1109_TETCI_2025_3529896
crossref_primary_10_1109_TSMC_2025_3539573
crossref_primary_10_3390_a18090551
crossref_primary_10_3390_electronics13173501
crossref_primary_10_1109_RBME_2023_3297604
crossref_primary_10_1002_ima_70064
crossref_primary_10_1007_s10489_024_05900_5
crossref_primary_10_3390_rs17183253
crossref_primary_10_1109_JBHI_2024_3426074
crossref_primary_10_1002_ima_70107
crossref_primary_10_1088_2631_8695_adebe0
crossref_primary_10_1117_1_JEI_33_1_013049
crossref_primary_10_1109_JBHI_2024_3504829
crossref_primary_10_1109_LSP_2025_3600374
crossref_primary_10_1002_ima_70103
crossref_primary_10_1007_s00371_024_03722_7
crossref_primary_10_1109_ACCESS_2024_3494241
crossref_primary_10_1007_s11517_024_03192_y
crossref_primary_10_1109_JBHI_2024_3468904
crossref_primary_10_1145_3759254
crossref_primary_10_1016_j_neunet_2024_106489
crossref_primary_10_1109_MCI_2025_3564274
crossref_primary_10_1049_ipr2_13103
crossref_primary_10_1109_TIP_2025_3602739
crossref_primary_10_1016_j_bspc_2025_108439
crossref_primary_10_1038_s41598_025_02714_4
crossref_primary_10_1038_s41598_025_92715_0
crossref_primary_10_1016_j_cviu_2025_104471
crossref_primary_10_1080_21681163_2024_2387458
crossref_primary_10_1109_TIM_2024_3406804
crossref_primary_10_1186_s40537_025_01246_y
crossref_primary_10_1007_s40747_024_01574_1
crossref_primary_10_1016_j_neunet_2025_107943
crossref_primary_10_1080_19393555_2025_2547206
crossref_primary_10_1186_s13636_024_00368_0
crossref_primary_10_1007_s13369_025_10443_z
crossref_primary_10_1109_ACCESS_2024_3463713
crossref_primary_10_1016_j_jfoodeng_2024_112338
crossref_primary_10_1002_ima_70086
crossref_primary_10_1038_s41598_024_81703_5
crossref_primary_10_1137_23M1577663
crossref_primary_10_1109_TETCI_2025_3547635
crossref_primary_10_3390_agronomy15071568
crossref_primary_10_1109_JSEN_2025_3553904
crossref_primary_10_1109_ACCESS_2025_3563375
crossref_primary_10_3390_bioengineering11060575
crossref_primary_10_1016_j_eswa_2025_127637
crossref_primary_10_3390_app14031293
crossref_primary_10_3390_electronics13234594
crossref_primary_10_1016_j_compbiomed_2024_108005
crossref_primary_10_1007_s10489_025_06387_4
crossref_primary_10_1007_s10278_024_01116_8
crossref_primary_10_1186_s12886_024_03376_y
crossref_primary_10_1007_s12559_024_10264_6
crossref_primary_10_3389_fmed_2025_1542737
crossref_primary_10_1109_TIM_2024_3370816
crossref_primary_10_1109_TGRS_2024_3421899
crossref_primary_10_1177_14727978251366513
crossref_primary_10_3390_sym17040531
crossref_primary_10_1016_j_compeleceng_2025_110099
crossref_primary_10_1186_s12903_024_04193_x
crossref_primary_10_3390_app14156765
crossref_primary_10_1016_j_jbi_2025_104827
crossref_primary_10_1109_ACCESS_2025_3592229
crossref_primary_10_1016_j_patcog_2025_112126
crossref_primary_10_1109_JBHI_2022_3184930
crossref_primary_10_1007_s11227_025_07313_8
crossref_primary_10_1016_j_engappai_2025_112085
crossref_primary_10_1109_TNSRE_2024_3442788
crossref_primary_10_1080_17538947_2024_2392845
crossref_primary_10_1109_TIM_2024_3476601
crossref_primary_10_1109_TETCI_2024_3449924
crossref_primary_10_1587_transinf_2024EDP7059
crossref_primary_10_1007_s42979_025_03799_4
crossref_primary_10_1109_TETCI_2024_3500025
crossref_primary_10_1038_s41598_025_92010_y
crossref_primary_10_1038_s41598_025_87851_6
crossref_primary_10_1109_JBHI_2024_3523492
Cites_doi 10.1007/978-3-030-87193-2_4
10.1007/978-3-030-59719-1_36
10.1109/TNNLS.2022.3159394
10.1007/978-3-030-46640-4_25
10.1109/TETCI.2022.3174868
10.1117/12.2628519
10.48550/arXiv.2010.11929
10.1007/978-3-030-87193-2_31
10.3978/j.issn.2223-4292.2014.11.20
10.1007/978-3-030-87193-2_2
10.1109/TETCI.2021.3136587
10.48550/arXiv.1802.00368
10.1109/CVPR46437.2021.00681
10.3389/fbioe.2020.00670
10.1109/NAECON.2018.8556686
10.1109/ISM46123.2019.00049
10.1109/TBME.2018.2866166
10.24963/ijcai.2018/614
10.1016/j.isprsjprs.2020.01.013
10.1016/j.patcog.2019.107152
10.1016/j.patcog.2020.107404
10.3389/fgene.2019.01110
10.1609/aaai.v35i6.16614
10.1109/CVPR.2015.7298965
10.2214/ajr.174.1.1740071
10.1109/CBMS49503.2020.00111
10.1007/978-3-031-25066-8_9
10.1109/TETCI.2021.3132382
10.5114/pjr.2022.119027
10.1007/978-3-319-24574-4_28
10.1007/978-3-030-58452-8_13
10.15439/2020F175
10.1109/ICCVW.2019.00052
10.1109/TBME.2017.2734058
10.1007/978-3-030-00889-5_1
10.1038/s41592-019-0612-7
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TETCI.2023.3309626
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2471-285X
EndPage 68
ExternalDocumentID 10_1109_TETCI_2023_3309626
10244199
Genre orig-research
GrantInformation_xml – fundername: Shenzhen Science and Technology Program
  grantid: RCYX20221008092852077
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation
  grantid: 2023A1515010057
  funderid: 10.13039/501100021171
– fundername: National Natural Science Foundation of China; NSFC
  grantid: 62176077; 62302172
  funderid: 10.13039/501100001809
– fundername: Shenzhen Key Technical Project
  grantid: 2022N001
– fundername: Shenzhen Fundamental Research and Discipline Layout project; Shenzhen Fundamental Research Fund
  grantid: JCYJ20210324132210025
  funderid: 10.13039/501100012271
– fundername: Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies
  grantid: 2022B1212010005
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c296t-8a7029db42285ce6a172cb3ce18ec18b5fcd1b8482f30e85c879e83cfc24dfe23
IEDL.DBID RIE
ISICitedReferencesCount 206
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001068988200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2471-285X
IngestDate Sun Jun 29 16:32:56 EDT 2025
Tue Nov 18 21:19:29 EST 2025
Sat Nov 29 05:12:09 EST 2025
Wed Aug 27 03:03:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-8a7029db42285ce6a172cb3ce18ec18b5fcd1b8482f30e85c879e83cfc24dfe23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1470-6998
0000-0002-9728-9511
0000-0003-0465-5381
0000-0003-1578-2634
0000-0002-2497-6214
PQID 2918030461
PQPubID 4437216
PageCount 14
ParticipantIDs ieee_primary_10244199
proquest_journals_2918030461
crossref_citationtrail_10_1109_TETCI_2023_3309626
crossref_primary_10_1109_TETCI_2023_3309626
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on emerging topics in computational intelligence
PublicationTitleAbbrev TETCI
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref15
ref37
ref36
iek (ref22) 2016
ref30
ref11
ref33
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Luo (ref7) 2016
ref24
Parmar (ref13) 2018
ref26
ref25
ref20
Tang (ref23) 2019
Codella (ref31) 2019
ref42
ref41
ref44
ref21
ref43
Oktay (ref10) 2019; 53
ref28
ref27
Chen (ref14) 2021
ref29
ref8
Jaderberg (ref12) 2015
ref9
ref4
ref3
ref6
ref5
ref40
Xie (ref45) 2021
References_xml – ident: ref15
  doi: 10.1007/978-3-030-87193-2_4
– ident: ref37
  doi: 10.1007/978-3-030-59719-1_36
– ident: ref39
  doi: 10.1109/TNNLS.2022.3159394
– ident: ref21
  doi: 10.1007/978-3-030-46640-4_25
– ident: ref2
  doi: 10.1109/TETCI.2022.3174868
– year: 2021
  ident: ref14
  article-title: TransUNet: Transformers make strong encoders for medical image segmentation
– ident: ref11
  doi: 10.1117/12.2628519
– start-page: 424
  volume-title: Proc. 19th Int. Conf. Med. Image Comput. Comput.- Assist. Interv.
  year: 2016
  ident: ref22
  article-title: 3D U-Net: Learning dense volumetric segmentation from sparse annotation
– ident: ref26
  doi: 10.48550/arXiv.2010.11929
– ident: ref30
  doi: 10.1007/978-3-030-87193-2_31
– ident: ref33
  doi: 10.3978/j.issn.2223-4292.2014.11.20
– ident: ref29
  doi: 10.1007/978-3-030-87193-2_2
– ident: ref3
  doi: 10.1109/TETCI.2021.3136587
– volume: 53
  start-page: 197
  issue: 2
  year: 2019
  ident: ref10
  article-title: Attention U-net: Learning where to look for the pancreas
  publication-title: Med. Image Anal.
– ident: ref40
  doi: 10.48550/arXiv.1802.00368
– ident: ref28
  doi: 10.1109/CVPR46437.2021.00681
– ident: ref20
  doi: 10.3389/fbioe.2020.00670
– ident: ref38
  doi: 10.1109/NAECON.2018.8556686
– ident: ref42
  doi: 10.1109/ISM46123.2019.00049
– ident: ref17
  doi: 10.1109/TBME.2018.2866166
– ident: ref16
  doi: 10.24963/ijcai.2018/614
– ident: ref41
  doi: 10.1016/j.isprsjprs.2020.01.013
– start-page: 2017
  volume-title: Proc. 28th Int. Conf. Neural Inf. Process. Syst.
  year: 2015
  ident: ref12
  article-title: Spatial transformer networks
– ident: ref4
  doi: 10.1016/j.patcog.2019.107152
– start-page: 4905
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  year: 2016
  ident: ref7
  article-title: Understanding the effective receptive field in deep convolutional neural networks
– start-page: 4055
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2018
  ident: ref13
  article-title: Image transformer
– ident: ref25
  doi: 10.1016/j.patcog.2020.107404
– ident: ref8
  doi: 10.3389/fgene.2019.01110
– start-page: 168
  volume-title: Proc. Int. Symp. Biomed. Imag.
  year: 2019
  ident: ref31
  article-title: Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (ISIC)
– ident: ref34
  doi: 10.1609/aaai.v35i6.16614
– ident: ref5
  doi: 10.1109/CVPR.2015.7298965
– ident: ref32
  doi: 10.2214/ajr.174.1.1740071
– ident: ref36
  doi: 10.1109/CBMS49503.2020.00111
– ident: ref44
  doi: 10.1007/978-3-031-25066-8_9
– ident: ref1
  doi: 10.1109/TETCI.2021.3132382
– ident: ref24
  doi: 10.5114/pjr.2022.119027
– ident: ref6
  doi: 10.1007/978-3-319-24574-4_28
– start-page: 457
  volume-title: Proc. Int. Conf. Med. Imag. Deep Learn.
  year: 2019
  ident: ref23
  article-title: XLSor: A robust and accurate lung segmentor on chest X-rays using criss-cross attention and customized radiorealistic abnormalities generation
– start-page: 12077
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2021
  ident: ref45
  article-title: Segformer: Simple and efficient design for semantic segmentation with transformers
– ident: ref27
  doi: 10.1007/978-3-030-58452-8_13
– ident: ref19
  doi: 10.15439/2020F175
– ident: ref43
  doi: 10.1109/ICCVW.2019.00052
– ident: ref18
  doi: 10.1109/TBME.2017.2734058
– ident: ref9
  doi: 10.1007/978-3-030-00889-5_1
– ident: ref35
  doi: 10.1038/s41592-019-0612-7
SSID ssj0002951354
Score 2.6251745
Snippet Accurate segmentation of organs or lesions from medical images is crucial for reliable diagnosis of diseases and organ morphometry. In recent years,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 55
SubjectTerms Biomedical image processing
Computer architecture
Convolution
Convolutional neural networks
Decoding
Encoders-Decoders
Image quality
Image segmentation
Medical diagnostic imaging
Medical image segmentation
Medical imaging
multi-level guided attention
multi-scale skip connection
Semantics
transformer
Transformers
Title TransAttUnet: Multi-Level Attention-Guided U-Net With Transformer for Medical Image Segmentation
URI https://ieeexplore.ieee.org/document/10244199
https://www.proquest.com/docview/2918030461
Volume 8
WOSCitedRecordID wos001068988200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2471-285X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002951354
  issn: 2471-285X
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9u-OCLHzhxOiUPvklmmn4lvg1xOpAhuOHeapNcdeA62TL_fpO0k4Eo-NRQLiG9a-4uyf3uELpQlOZWBeREax2TKCgEkTkHwqx5CTWDgsmq2EQ6HPLJRDzWYHWPhQEAH3wGXdf0d_l6rlbuqMyucGuMAiEaqJGmSQXW-j5QYdZXCONoDYyh4mp0O7oZdF198K7dtYvEJVDYMD6-msoPFeztSn_vnzPaR7u1A4l7lcQP0BaUh-jFm5yeMeMSzDX2qFry4OKBsH1ZRTSSu9VUg8ZjMgSDn6fmDY_WXisssH3g-tYGD2ZWy-AneJ3VyKSyhcZ9-533pK6dQBQTiSE8Ty1HtHQZvmIFSW4dFSVDBQEHFXAZF0oHkkecFSEFS8JTATxUhWKRLoCFR6hZzks4RliHVPICaKqpjGgRSMGYHQOU1FFq-d5GwZqpmaoTi7v6Fu-Z32BQkXlBZE4QWS2INrr87vNRpdX4k7rlWL9BWXG9jTpr4WX10ltmTAS8yiN_8ku3U7RjR4-q2OsOaprFCs7Qtvo00-Xi3P9VXx_2zFg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9-gb74gROnU_Pgm2Smabomvg3xYziH4IZ7q01y1YHrZOv8-03STgRR8KmhXPpxl9xdkvvdIXSqKU2tCkiJMSYiPMgkUakAwqx5CQ2DjKmy2ETc64nhUD5UYHWPhQEAH3wGTdf0Z_lmouduq8zOcGuMAimX0WrEOaMlXOtrS4VZbyGM-AIaQ-V5_6p_2Wm6CuFNu26XLZdC4Zv58fVUfihhb1mut_75Tdtos3IhcbuU-Q5agnwXPXuj0y6KQQ7FBfa4WtJ1EUHY3ixjGsnNfGTA4AHpQYGfRsUr7i_8Vphie8HVuQ3ujK2ewY_wMq6wSXkNDa7tf96SqnoC0Uy2CiLS2HLEKJfjK9LQSq2rolWoIRCgA6GiTJtACS5YFlKwJCKWIEKdacZNBizcQyv5JId9hE1IlciAxoYqTrNAScbsM0Arw2PL9zoKFkxNdJVa3FW4eEv8EoPKxAsicYJIKkHU0dlXn_cyscaf1DXH-m-UJdfrqLEQXlJNvlnCZCDKTPIHv3Q7Qeu3_ftu0u307g7Rhn0TLyOxG2ilmM7hCK3pj2I0mx77EfYJ6ejPnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TransAttUnet%3A+Multi-Level+Attention-Guided+U-Net+With+Transformer+for+Medical+Image+Segmentation&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Chen%2C+Bingzhi&rft.au=Liu%2C+Yishu&rft.au=Zhang%2C+Zheng&rft.au=Lu%2C+Guangming&rft.date=2024-02-01&rft.issn=2471-285X&rft.eissn=2471-285X&rft.volume=8&rft.issue=1&rft.spage=55&rft.epage=68&rft_id=info:doi/10.1109%2FTETCI.2023.3309626&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TETCI_2023_3309626
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon