TransAttUnet: Multi-Level Attention-Guided U-Net With Transformer for Medical Image Segmentation

Accurate segmentation of organs or lesions from medical images is crucial for reliable diagnosis of diseases and organ morphometry. In recent years, convolutional encoder-decoder solutions have achieved substantial progress in the field of automatic medical image segmentation. Due to the inherent bi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on emerging topics in computational intelligence Ročník 8; číslo 1; s. 55 - 68
Hlavní autoři: Chen, Bingzhi, Liu, Yishu, Zhang, Zheng, Lu, Guangming, Kong, Adams Wai Kin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2471-285X, 2471-285X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Accurate segmentation of organs or lesions from medical images is crucial for reliable diagnosis of diseases and organ morphometry. In recent years, convolutional encoder-decoder solutions have achieved substantial progress in the field of automatic medical image segmentation. Due to the inherent bias in the convolution operations, prior models mainly focus on local visual cues formed by the neighboring pixels, but fail to fully model the long-range contextual dependencies. In this article, we propose a novel Transformer-based Attention Guided Network called TransAttUnet , in which the multi-level guided attention and multi-scale skip connection are designed to jointly enhance the performance of the semantical segmentation architecture. Inspired by Transformer, the self-aware attention (SAA) module with Transformer Self Attention (TSA) and Global Spatial Attention (GSA) is incorporated into TransAttUnet to effectively learn the non-local interactions among encoder features. Moreover, we also use additional multi-scale skip connections between decoder blocks to aggregate the upsampled features with different semantic scales. In this way, the representation ability of multi-scale context information is strengthened to generate discriminative features. Benefitting from these complementary components, the proposed TransAttUnet can effectively alleviate the loss of fine details caused by the stacking of convolution layers and the consecutive sampling operations, finally improving the segmentation quality of medical images. Extensive experiments were conducted on multiple medical image segmentation datasets from various imaging modalities, which demonstrate that the proposed method consistently outperforms the existing state-of-the-art methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2471-285X
2471-285X
DOI:10.1109/TETCI.2023.3309626