Sketch of the Theory of Growth of Holomorphic Functions in a Multidimensional Torus
We develop an approach to the theory of growth of the class H (𝕋 n ) of holomorphic functions in a multidimensional torus 𝕋 n based on the structure of elements of this class and well-known results of the heory of growth of entire functions of several complex variables. This approach is illustrated...
Uloženo v:
| Vydáno v: | Journal of mathematical sciences (New York, N.Y.) Ročník 241; číslo 6; s. 735 - 749 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
09.09.2019
Springer |
| Témata: | |
| ISSN: | 1072-3374, 1573-8795 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We develop an approach to the theory of growth of the class
H
(𝕋
n
) of holomorphic functions in a multidimensional torus 𝕋
n
based on the structure of elements of this class and well-known results of the heory of growth of entire functions of several complex variables. This approach is illustrated in the case where the growth of the function
g
∈
H
(𝕋
n
) is compared with the growth of its maximum modulus on the skeleton of the polydisk. The properties of the corresponding characteristics of growth of the functions in the class
H
(𝕋
n
) are studied with their relation to coefficients of the corresponding Laurent series. A comparative analysis of these results and similar assertions of the theory of growth of entire functions of several variables is given. |
|---|---|
| ISSN: | 1072-3374 1573-8795 |
| DOI: | 10.1007/s10958-019-04459-8 |