Sketch of the Theory of Growth of Holomorphic Functions in a Multidimensional Torus

We develop an approach to the theory of growth of the class H (𝕋 n ) of holomorphic functions in a multidimensional torus 𝕋 n based on the structure of elements of this class and well-known results of the heory of growth of entire functions of several complex variables. This approach is illustrated...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical sciences (New York, N.Y.) Vol. 241; no. 6; pp. 735 - 749
Main Authors: Zavyalov, M. N., Maergoiz, L. S.
Format: Journal Article
Language:English
Published: New York Springer US 09.09.2019
Springer
Subjects:
ISSN:1072-3374, 1573-8795
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We develop an approach to the theory of growth of the class H (𝕋 n ) of holomorphic functions in a multidimensional torus 𝕋 n based on the structure of elements of this class and well-known results of the heory of growth of entire functions of several complex variables. This approach is illustrated in the case where the growth of the function g ∈ H (𝕋 n ) is compared with the growth of its maximum modulus on the skeleton of the polydisk. The properties of the corresponding characteristics of growth of the functions in the class H (𝕋 n ) are studied with their relation to coefficients of the corresponding Laurent series. A comparative analysis of these results and similar assertions of the theory of growth of entire functions of several variables is given.
AbstractList We develop an approach to the theory of growth of the class H([T.sup.n]) of holomorphic functions in a multidimensional torus [T.sup.n] based on the structure of elements of this class and well-known results of the heory of growth of entire functions of several complex variables. This approach is illustrated in the case where the growth of the function g [member of] H([T.sup.n]) is compared with the growth of its maximum modulus on the skeleton of the polydisk. The properties of the corresponding characteristics of growth of the functions in the class H([T.sup.n]) are studied with their relation to coefficients of the corresponding Laurent series. A comparative analysis of these results and similar assertions of the theory of growth of entire functions of several variables is given.
We develop an approach to the theory of growth of the class H (𝕋 n ) of holomorphic functions in a multidimensional torus 𝕋 n based on the structure of elements of this class and well-known results of the heory of growth of entire functions of several complex variables. This approach is illustrated in the case where the growth of the function g ∈ H (𝕋 n ) is compared with the growth of its maximum modulus on the skeleton of the polydisk. The properties of the corresponding characteristics of growth of the functions in the class H (𝕋 n ) are studied with their relation to coefficients of the corresponding Laurent series. A comparative analysis of these results and similar assertions of the theory of growth of entire functions of several variables is given.
We develop an approach to the theory of growth of the class H([T.sup.n]) of holomorphic functions in a multidimensional torus [T.sup.n] based on the structure of elements of this class and well-known results of the heory of growth of entire functions of several complex variables. This approach is illustrated in the case where the growth of the function g [member of] H([T.sup.n]) is compared with the growth of its maximum modulus on the skeleton of the polydisk. The properties of the corresponding characteristics of growth of the functions in the class H([T.sup.n]) are studied with their relation to coefficients of the corresponding Laurent series. A comparative analysis of these results and similar assertions of the theory of growth of entire functions of several variables is given. Keywords and phrases: entire function of several variables, holomorphic function in multidimensional torus, convex function, characteristics of growth, multiple Laurent series, carrier, strictly convex cone. AMS Subject Classification: 32A15, 30C45
Audience Academic
Author Zavyalov, M. N.
Maergoiz, L. S.
Author_xml – sequence: 1
  givenname: M. N.
  surname: Zavyalov
  fullname: Zavyalov, M. N.
  email: zavyalovmn@mail.ru
  organization: Siberian Federal University
– sequence: 2
  givenname: L. S.
  surname: Maergoiz
  fullname: Maergoiz, L. S.
  organization: Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”
BookMark eNp9kU9LwzAYh4NM8O8X8FTw5CGatEmbHGXoFBTBzXNI07dbtE1G0qL79kbnZTAkhyQ_nuc9vL8TNHHeAUIXlFxTQqqbSInkAhMqMWGMSywO0DHlVYFFJfkkvUmV46Ko2BE6ifGdJKkUxTGazz9gMKvMt9mwgmyxAh82P79Z8J_Db_7gO9_7sF5Zk92PzgzWu5hZl-nseewG29geXEyh7rKFD2M8Q4et7iKc_92n6O3-bjF9wE8vs8fp7RM2uSwFrg3nDQFSMVk2NVS5lpRrDobppgLJmrytddlIQaGWZQtQ10a2rJElI7mgvDhFl9u5S92Bsq71Q9Cmt9Go25JIIUnB8kThPdQSHATdpS22NsU7_PUePp0Gemv2Clc7QmIG-BqWeoxRPc5fd9l8y5rgYwzQqnWwvQ4bRYn6aVJtm1SpSfXbpBJJKrZSTLBbQlDvfgxp3fE_6xvCSqFY
Cites_doi 10.1007/978-94-017-0807-4
10.1515/9781400873173
10.1007/BF00967646
10.1134/S0037446614050115
10.1515/9781400882526
10.1007/978-3-642-70344-7
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
COPYRIGHT 2019 Springer
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: COPYRIGHT 2019 Springer
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10958-019-04459-8
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList




DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 749
ExternalDocumentID A609890342
10_1007_s10958_019_04459_8
GroupedDBID -52
-5D
-5G
-BR
-EM
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c2968-bc55d0e07496dbe72a915a5ec4ad7e94d2fba6d981eb96feebbc9f4d964028153
IEDL.DBID RSV
ISSN 1072-3374
IngestDate Sat Nov 29 13:15:07 EST 2025
Sat Nov 29 11:20:45 EST 2025
Sat Nov 29 10:20:55 EST 2025
Wed Nov 26 10:11:15 EST 2025
Sat Nov 29 02:57:28 EST 2025
Fri Feb 21 02:34:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords 32A15
carrier
30C45
multiple Laurent series
convex function
strictly convex cone
entire function of several variables
holomorphic function in multidimensional torus
characteristics of growth
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2968-bc55d0e07496dbe72a915a5ec4ad7e94d2fba6d981eb96feebbc9f4d964028153
PageCount 15
ParticipantIDs gale_infotracmisc_A609890342
gale_infotracgeneralonefile_A609890342
gale_infotracacademiconefile_A609890342
gale_incontextgauss_ISR_A609890342
crossref_primary_10_1007_s10958_019_04459_8
springer_journals_10_1007_s10958_019_04459_8
PublicationCentury 2000
PublicationDate 20190909
PublicationDateYYYYMMDD 2019-09-09
PublicationDate_xml – month: 09
  year: 2019
  text: 20190909
  day: 09
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationTitleAbbrev J Math Sci
PublicationYear 2019
Publisher Springer US
Springer
Publisher_xml – name: Springer US
– name: Springer
References MaergoizLSMultidimensional analog of Laurent expansion of holomorphic functions and related questionsDokl. Ross. Akad. Nauk201345254864893154333
B. V. Shabat, Introduction to Complex Analysis, Part II, Nauka, Moscow (1985).
MaergoizLSAsymptotic Characteristics of Entire Functions and Their Applications in Mathematics and Biophysics2003Dordrecht–Boston–LondonKluwer Academic10.1007/978-94-017-0807-41243.32001
MaergoizLSExtensions of the class of entire functions of several variables and related topicsSib. Mat. Zh.201455511371159328911610.1134/S00374466140501151304.32001
RockafellarPTConvex Analysis1970Princeton, New JerseyPrinceton Univ. Press10.1515/97814008731730193.18401
MaergoizLSFunction of orders and scales of growth of entire functions of many variablesSib. Mat. Zh.197213111813210.1007/BF00967646
FultonWIntroduction to Toric Varieties1993Princeton, New JerseyPrinceton Univ. Press10.1515/97814008825260813.14039
RonkinLIIntroduction to the Theory of Entire Functions of Many Variables [in Russian]1971MoscowNauka
MaergoizLSFunctions of types of an entire function of several variables in the directions of its growthSib. Mat. Zh.197314510371056
A. G. Khovansky, “Newton polytopes (solution of singularities),” Itogi Nauki Tekhn. Sovr. Probl. Mat. Nov. Dostizh., 22, 207–239, VINITI, Moscow (1983).
L. I. Ronkin, “Entire functions,” Itogi Nauki Tekhn. Sovr. Probl. Mat. Fundam. Napr., 9, 5–36, VINITI, Moscow (1986).
RaikovDAVector Spaces [in Russian]1962MoscowFizmatgiz
L. S. Maergoiz, “Laplace–Borel transformation of functions holomorphic in the torus and equivalent to entire functions,” in: Methods of Fourier Analysis and Approximation Theory, Birkhäuser, Basel (2016), pp. 195–209.
LelongPGrumanLEntire Functions of Several Complex Variables1986BerlinSpringer-Verlag10.1007/978-3-642-70344-70583.32001
4459_CR13
4459_CR14
DA Raikov (4459_CR10) 1962
4459_CR2
LS Maergoiz (4459_CR5) 1973; 14
LS Maergoiz (4459_CR4) 1972; 13
LS Maergoiz (4459_CR7) 2013; 452
LS Maergoiz (4459_CR8) 2014; 55
4459_CR9
PT Rockafellar (4459_CR11) 1970
P Lelong (4459_CR3) 1986
LS Maergoiz (4459_CR6) 2003
LI Ronkin (4459_CR12) 1971
W Fulton (4459_CR1) 1993
References_xml – reference: A. G. Khovansky, “Newton polytopes (solution of singularities),” Itogi Nauki Tekhn. Sovr. Probl. Mat. Nov. Dostizh., 22, 207–239, VINITI, Moscow (1983).
– reference: LelongPGrumanLEntire Functions of Several Complex Variables1986BerlinSpringer-Verlag10.1007/978-3-642-70344-70583.32001
– reference: L. S. Maergoiz, “Laplace–Borel transformation of functions holomorphic in the torus and equivalent to entire functions,” in: Methods of Fourier Analysis and Approximation Theory, Birkhäuser, Basel (2016), pp. 195–209.
– reference: B. V. Shabat, Introduction to Complex Analysis, Part II, Nauka, Moscow (1985).
– reference: MaergoizLSAsymptotic Characteristics of Entire Functions and Their Applications in Mathematics and Biophysics2003Dordrecht–Boston–LondonKluwer Academic10.1007/978-94-017-0807-41243.32001
– reference: MaergoizLSExtensions of the class of entire functions of several variables and related topicsSib. Mat. Zh.201455511371159328911610.1134/S00374466140501151304.32001
– reference: FultonWIntroduction to Toric Varieties1993Princeton, New JerseyPrinceton Univ. Press10.1515/97814008825260813.14039
– reference: RockafellarPTConvex Analysis1970Princeton, New JerseyPrinceton Univ. Press10.1515/97814008731730193.18401
– reference: MaergoizLSFunction of orders and scales of growth of entire functions of many variablesSib. Mat. Zh.197213111813210.1007/BF00967646
– reference: L. I. Ronkin, “Entire functions,” Itogi Nauki Tekhn. Sovr. Probl. Mat. Fundam. Napr., 9, 5–36, VINITI, Moscow (1986).
– reference: MaergoizLSMultidimensional analog of Laurent expansion of holomorphic functions and related questionsDokl. Ross. Akad. Nauk201345254864893154333
– reference: RonkinLIIntroduction to the Theory of Entire Functions of Many Variables [in Russian]1971MoscowNauka
– reference: MaergoizLSFunctions of types of an entire function of several variables in the directions of its growthSib. Mat. Zh.197314510371056
– reference: RaikovDAVector Spaces [in Russian]1962MoscowFizmatgiz
– ident: 4459_CR13
– ident: 4459_CR14
– volume-title: Asymptotic Characteristics of Entire Functions and Their Applications in Mathematics and Biophysics
  year: 2003
  ident: 4459_CR6
  doi: 10.1007/978-94-017-0807-4
– volume: 14
  start-page: 1037
  issue: 5
  year: 1973
  ident: 4459_CR5
  publication-title: Sib. Mat. Zh.
– ident: 4459_CR9
– volume-title: Convex Analysis
  year: 1970
  ident: 4459_CR11
  doi: 10.1515/9781400873173
– ident: 4459_CR2
– volume-title: Introduction to the Theory of Entire Functions of Many Variables [in Russian]
  year: 1971
  ident: 4459_CR12
– volume: 452
  start-page: 486
  issue: 5
  year: 2013
  ident: 4459_CR7
  publication-title: Dokl. Ross. Akad. Nauk
– volume: 13
  start-page: 118
  issue: 1
  year: 1972
  ident: 4459_CR4
  publication-title: Sib. Mat. Zh.
  doi: 10.1007/BF00967646
– volume: 55
  start-page: 1137
  issue: 5
  year: 2014
  ident: 4459_CR8
  publication-title: Sib. Mat. Zh.
  doi: 10.1134/S0037446614050115
– volume-title: Introduction to Toric Varieties
  year: 1993
  ident: 4459_CR1
  doi: 10.1515/9781400882526
– volume-title: Vector Spaces [in Russian]
  year: 1962
  ident: 4459_CR10
– volume-title: Entire Functions of Several Complex Variables
  year: 1986
  ident: 4459_CR3
  doi: 10.1007/978-3-642-70344-7
SSID ssj0007683
Score 2.1433556
Snippet We develop an approach to the theory of growth of the class H (𝕋 n ) of holomorphic functions in a multidimensional torus 𝕋 n based on the structure of...
We develop an approach to the theory of growth of the class H([T.sup.n]) of holomorphic functions in a multidimensional torus [T.sup.n] based on the structure...
SourceID gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 735
SubjectTerms Mathematics
Mathematics and Statistics
Title Sketch of the Theory of Growth of Holomorphic Functions in a Multidimensional Torus
URI https://link.springer.com/article/10.1007/s10958-019-04459-8
Volume 241
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-8795
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007683
  issn: 1072-3374
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6-DnrwLa6uEkT0oIVum6bNcRHX9eAiuyreQl5dFrGV7a6_30naqgURFHppOoR0MpnJ6_sGoVNKI-H7inpEaukRkVqwcpR4fpRQFgU01lK7ZBPxYJA8P7P7ChRW1Lfd6yNJ56m_gd2YrcSCbgixm1eLaBnCXWITNgxHT5_-FybQ5bX6OPDCMCYVVObnOhrhqHbKzSNRF2l6G_9r4yZar2aWuFuawhZaMNk2Wrv7pGUtdtBo9GJ7CecphlJc4vLt2w0sxmeuvA_O8DUH5U8U7kHMc2aJJxkW2GF1tc0GUDJ54Id8Oi920WPv-uGq71VZFTwVMJp4UkWR9g1MHRjV0sSBYJ1IREYRoWPDiA5SKahmScdIRlNjpFQsJZpRWGom4CD30FKWZ2Yf4U4aEgETGIiDgnQEkSyE4SxCJWlq95Za6KJWLn8ryTP4F02yVRUHVXGnKp600InVP7esFJm99jIW86Lgt6Mh71LoZ2bZClvovBJK89lUKFGhCKBBlsiqIXnWkByXNN4_CbYbgjC-VOPzZd3XvBrfxS9_cfA38UO0GjhzsU8bLc2mc3OEVtT7bFJMj51hfwADK_DC
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-xgjT2wMfGRKGAhdB4gEhp4jjxI5pWWkErRAvqm-WvoGoiQU27vx_bSdgiVUhDykuck-Wcz3fnj9_PAGeERNz3JfGwUMLDPLVg5Sjx_CghNApIrIRyl03Eo1EyndK7ChRW1Kfd6y1J56n_AbtRW4kF3WBsF68-wTo2Ecsy5t-PH9_8r0mgy2P1ceCFYYwrqMzqOhrhqHbKzS1RF2l62x9r4w5sVZkluipNYRfWdPYVvgzfaFmLbzAe_7a9hPIUmVJU4vLt27WZjC9ced84w-fcKH8mUc_EPGeWaJYhjhxWV9nbAEomDzTJ58tiDx56vyY_-151q4InA0oST8goUr42qQMlSug44LQb8UhLzFWsKVZBKjhRNOlqQUmqtRCSplhRYqaaiXGQ36GV5ZneB9RNQ8xNAmPiIMddjgUNzXDmoRQktWtLbbiolcteSvIM9pcm2aqKGVUxpyqWtOHU6p9ZVorMHnt54suiYIPxPbsiPk2oZStsw3kllOaLOZe8QhGYBlkiq4bkj4bkU0njvUqw0xA040s2Pl_Wfc2q8V288xcH_yd-Ap_7k-Etux2Mbg5hM3CmY58OtBbzpT6CDflnMSvmx87IXwFS3_Om
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS90wFD5sTmR72HRueDc3g8h80GJvm6bNo2y7UzYv4lXxLeSnXIat3Pbu719O2ussiCCDvjQ9hDTnJOckOd8XgB3GMhnHmkVUGRVR6RCsnBVRnBWMZwnLjTLhsol8PC6urvjpPRR_yHZfHEm2mAZkaSqbg1vjDu4B3zhWiAAcSnEj6zm8oJhIj-v1yeXdXOyD6TbFPk-iNM1pB5t5uI6ea1pM0P3j0eB1Rm_-v72r8LqLOMlhayJr8MyWb-HVyR1da70Ok8lv1B6pHPGlpMXr49sPv0hvQvmRnyRvKq-UqSYj7wuDuZJpSSQJGF6DtwS0DB_kvJrN63dwMfp-_vUo6m5biHTCWREpnWUmtj6k4MwomyeSDzOZWU2lyS2nJnFKMsOLoVWcOWuV0txRw5lfghZ-4nwPS2VV2g0gQ5dS6QMb7x8lHUqqeOqHuUy1Yg73nAawt-hocduSaoh_9MnYVcJ3lQhdJYoBbKMuBLJVlJgOcy3ndS2OJ2fikMW84MhiOIDdTshVzUxq2aELfIOQ4Kon-aUned3Sez8kuNkT9ONO9z7vL_QuunFfP_IXH54mvgUrp99G4tfx-OdHeJkEy8FnE5aa2dx-gmX9p5nWs8_B3v8C22D8ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sketch+of+the+Theory+of+Growth+of+Holomorphic+Functions+in+a+Multidimensional+Torus&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Zavyalov%2C+M.+N.&rft.au=Maergoiz%2C+L.+S.&rft.date=2019-09-09&rft.pub=Springer+US&rft.issn=1072-3374&rft.eissn=1573-8795&rft.volume=241&rft.issue=6&rft.spage=735&rft.epage=749&rft_id=info:doi/10.1007%2Fs10958-019-04459-8&rft.externalDocID=10_1007_s10958_019_04459_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon