Sketch of the Theory of Growth of Holomorphic Functions in a Multidimensional Torus
We develop an approach to the theory of growth of the class H (𝕋 n ) of holomorphic functions in a multidimensional torus 𝕋 n based on the structure of elements of this class and well-known results of the heory of growth of entire functions of several complex variables. This approach is illustrated...
Saved in:
| Published in: | Journal of mathematical sciences (New York, N.Y.) Vol. 241; no. 6; pp. 735 - 749 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
09.09.2019
Springer |
| Subjects: | |
| ISSN: | 1072-3374, 1573-8795 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We develop an approach to the theory of growth of the class
H
(𝕋
n
) of holomorphic functions in a multidimensional torus 𝕋
n
based on the structure of elements of this class and well-known results of the heory of growth of entire functions of several complex variables. This approach is illustrated in the case where the growth of the function
g
∈
H
(𝕋
n
) is compared with the growth of its maximum modulus on the skeleton of the polydisk. The properties of the corresponding characteristics of growth of the functions in the class
H
(𝕋
n
) are studied with their relation to coefficients of the corresponding Laurent series. A comparative analysis of these results and similar assertions of the theory of growth of entire functions of several variables is given. |
|---|---|
| AbstractList | We develop an approach to the theory of growth of the class H([T.sup.n]) of holomorphic functions in a multidimensional torus [T.sup.n] based on the structure of elements of this class and well-known results of the heory of growth of entire functions of several complex variables. This approach is illustrated in the case where the growth of the function g [member of] H([T.sup.n]) is compared with the growth of its maximum modulus on the skeleton of the polydisk. The properties of the corresponding characteristics of growth of the functions in the class H([T.sup.n]) are studied with their relation to coefficients of the corresponding Laurent series. A comparative analysis of these results and similar assertions of the theory of growth of entire functions of several variables is given. We develop an approach to the theory of growth of the class H (𝕋 n ) of holomorphic functions in a multidimensional torus 𝕋 n based on the structure of elements of this class and well-known results of the heory of growth of entire functions of several complex variables. This approach is illustrated in the case where the growth of the function g ∈ H (𝕋 n ) is compared with the growth of its maximum modulus on the skeleton of the polydisk. The properties of the corresponding characteristics of growth of the functions in the class H (𝕋 n ) are studied with their relation to coefficients of the corresponding Laurent series. A comparative analysis of these results and similar assertions of the theory of growth of entire functions of several variables is given. We develop an approach to the theory of growth of the class H([T.sup.n]) of holomorphic functions in a multidimensional torus [T.sup.n] based on the structure of elements of this class and well-known results of the heory of growth of entire functions of several complex variables. This approach is illustrated in the case where the growth of the function g [member of] H([T.sup.n]) is compared with the growth of its maximum modulus on the skeleton of the polydisk. The properties of the corresponding characteristics of growth of the functions in the class H([T.sup.n]) are studied with their relation to coefficients of the corresponding Laurent series. A comparative analysis of these results and similar assertions of the theory of growth of entire functions of several variables is given. Keywords and phrases: entire function of several variables, holomorphic function in multidimensional torus, convex function, characteristics of growth, multiple Laurent series, carrier, strictly convex cone. AMS Subject Classification: 32A15, 30C45 |
| Audience | Academic |
| Author | Zavyalov, M. N. Maergoiz, L. S. |
| Author_xml | – sequence: 1 givenname: M. N. surname: Zavyalov fullname: Zavyalov, M. N. email: zavyalovmn@mail.ru organization: Siberian Federal University – sequence: 2 givenname: L. S. surname: Maergoiz fullname: Maergoiz, L. S. organization: Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences” |
| BookMark | eNp9kU9LwzAYh4NM8O8X8FTw5CGatEmbHGXoFBTBzXNI07dbtE1G0qL79kbnZTAkhyQ_nuc9vL8TNHHeAUIXlFxTQqqbSInkAhMqMWGMSywO0DHlVYFFJfkkvUmV46Ko2BE6ifGdJKkUxTGazz9gMKvMt9mwgmyxAh82P79Z8J_Db_7gO9_7sF5Zk92PzgzWu5hZl-nseewG29geXEyh7rKFD2M8Q4et7iKc_92n6O3-bjF9wE8vs8fp7RM2uSwFrg3nDQFSMVk2NVS5lpRrDobppgLJmrytddlIQaGWZQtQ10a2rJElI7mgvDhFl9u5S92Bsq71Q9Cmt9Go25JIIUnB8kThPdQSHATdpS22NsU7_PUePp0Gemv2Clc7QmIG-BqWeoxRPc5fd9l8y5rgYwzQqnWwvQ4bRYn6aVJtm1SpSfXbpBJJKrZSTLBbQlDvfgxp3fE_6xvCSqFY |
| Cites_doi | 10.1007/978-94-017-0807-4 10.1515/9781400873173 10.1007/BF00967646 10.1134/S0037446614050115 10.1515/9781400882526 10.1007/978-3-642-70344-7 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 COPYRIGHT 2019 Springer |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: COPYRIGHT 2019 Springer |
| DBID | AAYXX CITATION ISR |
| DOI | 10.1007/s10958-019-04459-8 |
| DatabaseName | CrossRef Gale In Context: Science |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1573-8795 |
| EndPage | 749 |
| ExternalDocumentID | A609890342 10_1007_s10958_019_04459_8 |
| GroupedDBID | -52 -5D -5G -BR -EM -~C -~X .86 .VR 06D 0R~ 0VY 1N0 29L 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BAPOH BDATZ BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IEA IHE IJ- IKXTQ IOF ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 XU3 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION |
| ID | FETCH-LOGICAL-c2968-bc55d0e07496dbe72a915a5ec4ad7e94d2fba6d981eb96feebbc9f4d964028153 |
| IEDL.DBID | RSV |
| ISSN | 1072-3374 |
| IngestDate | Sat Nov 29 13:15:07 EST 2025 Sat Nov 29 11:20:45 EST 2025 Sat Nov 29 10:20:55 EST 2025 Wed Nov 26 10:11:15 EST 2025 Sat Nov 29 02:57:28 EST 2025 Fri Feb 21 02:34:06 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | 32A15 carrier 30C45 multiple Laurent series convex function strictly convex cone entire function of several variables holomorphic function in multidimensional torus characteristics of growth |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2968-bc55d0e07496dbe72a915a5ec4ad7e94d2fba6d981eb96feebbc9f4d964028153 |
| PageCount | 15 |
| ParticipantIDs | gale_infotracmisc_A609890342 gale_infotracgeneralonefile_A609890342 gale_infotracacademiconefile_A609890342 gale_incontextgauss_ISR_A609890342 crossref_primary_10_1007_s10958_019_04459_8 springer_journals_10_1007_s10958_019_04459_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20190909 |
| PublicationDateYYYYMMDD | 2019-09-09 |
| PublicationDate_xml | – month: 09 year: 2019 text: 20190909 day: 09 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of mathematical sciences (New York, N.Y.) |
| PublicationTitleAbbrev | J Math Sci |
| PublicationYear | 2019 |
| Publisher | Springer US Springer |
| Publisher_xml | – name: Springer US – name: Springer |
| References | MaergoizLSMultidimensional analog of Laurent expansion of holomorphic functions and related questionsDokl. Ross. Akad. Nauk201345254864893154333 B. V. Shabat, Introduction to Complex Analysis, Part II, Nauka, Moscow (1985). MaergoizLSAsymptotic Characteristics of Entire Functions and Their Applications in Mathematics and Biophysics2003Dordrecht–Boston–LondonKluwer Academic10.1007/978-94-017-0807-41243.32001 MaergoizLSExtensions of the class of entire functions of several variables and related topicsSib. Mat. Zh.201455511371159328911610.1134/S00374466140501151304.32001 RockafellarPTConvex Analysis1970Princeton, New JerseyPrinceton Univ. Press10.1515/97814008731730193.18401 MaergoizLSFunction of orders and scales of growth of entire functions of many variablesSib. Mat. Zh.197213111813210.1007/BF00967646 FultonWIntroduction to Toric Varieties1993Princeton, New JerseyPrinceton Univ. Press10.1515/97814008825260813.14039 RonkinLIIntroduction to the Theory of Entire Functions of Many Variables [in Russian]1971MoscowNauka MaergoizLSFunctions of types of an entire function of several variables in the directions of its growthSib. Mat. Zh.197314510371056 A. G. Khovansky, “Newton polytopes (solution of singularities),” Itogi Nauki Tekhn. Sovr. Probl. Mat. Nov. Dostizh., 22, 207–239, VINITI, Moscow (1983). L. I. Ronkin, “Entire functions,” Itogi Nauki Tekhn. Sovr. Probl. Mat. Fundam. Napr., 9, 5–36, VINITI, Moscow (1986). RaikovDAVector Spaces [in Russian]1962MoscowFizmatgiz L. S. Maergoiz, “Laplace–Borel transformation of functions holomorphic in the torus and equivalent to entire functions,” in: Methods of Fourier Analysis and Approximation Theory, Birkhäuser, Basel (2016), pp. 195–209. LelongPGrumanLEntire Functions of Several Complex Variables1986BerlinSpringer-Verlag10.1007/978-3-642-70344-70583.32001 4459_CR13 4459_CR14 DA Raikov (4459_CR10) 1962 4459_CR2 LS Maergoiz (4459_CR5) 1973; 14 LS Maergoiz (4459_CR4) 1972; 13 LS Maergoiz (4459_CR7) 2013; 452 LS Maergoiz (4459_CR8) 2014; 55 4459_CR9 PT Rockafellar (4459_CR11) 1970 P Lelong (4459_CR3) 1986 LS Maergoiz (4459_CR6) 2003 LI Ronkin (4459_CR12) 1971 W Fulton (4459_CR1) 1993 |
| References_xml | – reference: A. G. Khovansky, “Newton polytopes (solution of singularities),” Itogi Nauki Tekhn. Sovr. Probl. Mat. Nov. Dostizh., 22, 207–239, VINITI, Moscow (1983). – reference: LelongPGrumanLEntire Functions of Several Complex Variables1986BerlinSpringer-Verlag10.1007/978-3-642-70344-70583.32001 – reference: L. S. Maergoiz, “Laplace–Borel transformation of functions holomorphic in the torus and equivalent to entire functions,” in: Methods of Fourier Analysis and Approximation Theory, Birkhäuser, Basel (2016), pp. 195–209. – reference: B. V. Shabat, Introduction to Complex Analysis, Part II, Nauka, Moscow (1985). – reference: MaergoizLSAsymptotic Characteristics of Entire Functions and Their Applications in Mathematics and Biophysics2003Dordrecht–Boston–LondonKluwer Academic10.1007/978-94-017-0807-41243.32001 – reference: MaergoizLSExtensions of the class of entire functions of several variables and related topicsSib. Mat. Zh.201455511371159328911610.1134/S00374466140501151304.32001 – reference: FultonWIntroduction to Toric Varieties1993Princeton, New JerseyPrinceton Univ. Press10.1515/97814008825260813.14039 – reference: RockafellarPTConvex Analysis1970Princeton, New JerseyPrinceton Univ. Press10.1515/97814008731730193.18401 – reference: MaergoizLSFunction of orders and scales of growth of entire functions of many variablesSib. Mat. Zh.197213111813210.1007/BF00967646 – reference: L. I. Ronkin, “Entire functions,” Itogi Nauki Tekhn. Sovr. Probl. Mat. Fundam. Napr., 9, 5–36, VINITI, Moscow (1986). – reference: MaergoizLSMultidimensional analog of Laurent expansion of holomorphic functions and related questionsDokl. Ross. Akad. Nauk201345254864893154333 – reference: RonkinLIIntroduction to the Theory of Entire Functions of Many Variables [in Russian]1971MoscowNauka – reference: MaergoizLSFunctions of types of an entire function of several variables in the directions of its growthSib. Mat. Zh.197314510371056 – reference: RaikovDAVector Spaces [in Russian]1962MoscowFizmatgiz – ident: 4459_CR13 – ident: 4459_CR14 – volume-title: Asymptotic Characteristics of Entire Functions and Their Applications in Mathematics and Biophysics year: 2003 ident: 4459_CR6 doi: 10.1007/978-94-017-0807-4 – volume: 14 start-page: 1037 issue: 5 year: 1973 ident: 4459_CR5 publication-title: Sib. Mat. Zh. – ident: 4459_CR9 – volume-title: Convex Analysis year: 1970 ident: 4459_CR11 doi: 10.1515/9781400873173 – ident: 4459_CR2 – volume-title: Introduction to the Theory of Entire Functions of Many Variables [in Russian] year: 1971 ident: 4459_CR12 – volume: 452 start-page: 486 issue: 5 year: 2013 ident: 4459_CR7 publication-title: Dokl. Ross. Akad. Nauk – volume: 13 start-page: 118 issue: 1 year: 1972 ident: 4459_CR4 publication-title: Sib. Mat. Zh. doi: 10.1007/BF00967646 – volume: 55 start-page: 1137 issue: 5 year: 2014 ident: 4459_CR8 publication-title: Sib. Mat. Zh. doi: 10.1134/S0037446614050115 – volume-title: Introduction to Toric Varieties year: 1993 ident: 4459_CR1 doi: 10.1515/9781400882526 – volume-title: Vector Spaces [in Russian] year: 1962 ident: 4459_CR10 – volume-title: Entire Functions of Several Complex Variables year: 1986 ident: 4459_CR3 doi: 10.1007/978-3-642-70344-7 |
| SSID | ssj0007683 |
| Score | 2.1433556 |
| Snippet | We develop an approach to the theory of growth of the class
H
(𝕋
n
) of holomorphic functions in a multidimensional torus 𝕋
n
based on the structure of... We develop an approach to the theory of growth of the class H([T.sup.n]) of holomorphic functions in a multidimensional torus [T.sup.n] based on the structure... |
| SourceID | gale crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 735 |
| SubjectTerms | Mathematics Mathematics and Statistics |
| Title | Sketch of the Theory of Growth of Holomorphic Functions in a Multidimensional Torus |
| URI | https://link.springer.com/article/10.1007/s10958-019-04459-8 |
| Volume | 241 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-8795 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007683 issn: 1072-3374 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6-DnrwLa6uEkT0oIVum6bNcRHX9eAiuyreQl5dFrGV7a6_30naqgURFHppOoR0MpnJ6_sGoVNKI-H7inpEaukRkVqwcpR4fpRQFgU01lK7ZBPxYJA8P7P7ChRW1Lfd6yNJ56m_gd2YrcSCbgixm1eLaBnCXWITNgxHT5_-FybQ5bX6OPDCMCYVVObnOhrhqHbKzSNRF2l6G_9r4yZar2aWuFuawhZaMNk2Wrv7pGUtdtBo9GJ7CecphlJc4vLt2w0sxmeuvA_O8DUH5U8U7kHMc2aJJxkW2GF1tc0GUDJ54Id8Oi920WPv-uGq71VZFTwVMJp4UkWR9g1MHRjV0sSBYJ1IREYRoWPDiA5SKahmScdIRlNjpFQsJZpRWGom4CD30FKWZ2Yf4U4aEgETGIiDgnQEkSyE4SxCJWlq95Za6KJWLn8ryTP4F02yVRUHVXGnKp600InVP7esFJm99jIW86Lgt6Mh71LoZ2bZClvovBJK89lUKFGhCKBBlsiqIXnWkByXNN4_CbYbgjC-VOPzZd3XvBrfxS9_cfA38UO0GjhzsU8bLc2mc3OEVtT7bFJMj51hfwADK_DC |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-xgjT2wMfGRKGAhdB4gEhp4jjxI5pWWkErRAvqm-WvoGoiQU27vx_bSdgiVUhDykuck-Wcz3fnj9_PAGeERNz3JfGwUMLDPLVg5Sjx_CghNApIrIRyl03Eo1EyndK7ChRW1Kfd6y1J56n_AbtRW4kF3WBsF68-wTo2Ecsy5t-PH9_8r0mgy2P1ceCFYYwrqMzqOhrhqHbKzS1RF2l62x9r4w5sVZkluipNYRfWdPYVvgzfaFmLbzAe_7a9hPIUmVJU4vLt27WZjC9ced84w-fcKH8mUc_EPGeWaJYhjhxWV9nbAEomDzTJ58tiDx56vyY_-151q4InA0oST8goUr42qQMlSug44LQb8UhLzFWsKVZBKjhRNOlqQUmqtRCSplhRYqaaiXGQ36GV5ZneB9RNQ8xNAmPiIMddjgUNzXDmoRQktWtLbbiolcteSvIM9pcm2aqKGVUxpyqWtOHU6p9ZVorMHnt54suiYIPxPbsiPk2oZStsw3kllOaLOZe8QhGYBlkiq4bkj4bkU0njvUqw0xA040s2Pl_Wfc2q8V288xcH_yd-Ap_7k-Etux2Mbg5hM3CmY58OtBbzpT6CDflnMSvmx87IXwFS3_Om |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS90wFD5sTmR72HRueDc3g8h80GJvm6bNo2y7UzYv4lXxLeSnXIat3Pbu719O2ussiCCDvjQ9hDTnJOckOd8XgB3GMhnHmkVUGRVR6RCsnBVRnBWMZwnLjTLhsol8PC6urvjpPRR_yHZfHEm2mAZkaSqbg1vjDu4B3zhWiAAcSnEj6zm8oJhIj-v1yeXdXOyD6TbFPk-iNM1pB5t5uI6ea1pM0P3j0eB1Rm_-v72r8LqLOMlhayJr8MyWb-HVyR1da70Ok8lv1B6pHPGlpMXr49sPv0hvQvmRnyRvKq-UqSYj7wuDuZJpSSQJGF6DtwS0DB_kvJrN63dwMfp-_vUo6m5biHTCWREpnWUmtj6k4MwomyeSDzOZWU2lyS2nJnFKMsOLoVWcOWuV0txRw5lfghZ-4nwPS2VV2g0gQ5dS6QMb7x8lHUqqeOqHuUy1Yg73nAawt-hocduSaoh_9MnYVcJ3lQhdJYoBbKMuBLJVlJgOcy3ndS2OJ2fikMW84MhiOIDdTshVzUxq2aELfIOQ4Kon-aUned3Sez8kuNkT9ONO9z7vL_QuunFfP_IXH54mvgUrp99G4tfx-OdHeJkEy8FnE5aa2dx-gmX9p5nWs8_B3v8C22D8ig |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sketch+of+the+Theory+of+Growth+of+Holomorphic+Functions+in+a+Multidimensional+Torus&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Zavyalov%2C+M.+N.&rft.au=Maergoiz%2C+L.+S.&rft.date=2019-09-09&rft.pub=Springer+US&rft.issn=1072-3374&rft.eissn=1573-8795&rft.volume=241&rft.issue=6&rft.spage=735&rft.epage=749&rft_id=info:doi/10.1007%2Fs10958-019-04459-8&rft.externalDocID=10_1007_s10958_019_04459_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon |