Hybrid quantum-classical algorithms for approximate graph coloring

We show how to apply the recursive quantum approximate optimization algorithm (RQAOA) to MAX- k -CUT, the problem of finding an approximate k -vertex coloring of a graph. We compare this proposal to the best known classical and hybrid classical-quantum algorithms. First, we show that the standard (n...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Quantum (Vienna, Austria) Ročník 6; s. 678
Hlavní autoři: Bravyi, Sergey, Kliesch, Alexander, Koenig, Robert, Tang, Eugene
Médium: Journal Article
Jazyk:angličtina
Vydáno: Austria Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften 30.03.2022
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
ISSN:2521-327X, 2521-327X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We show how to apply the recursive quantum approximate optimization algorithm (RQAOA) to MAX- k -CUT, the problem of finding an approximate k -vertex coloring of a graph. We compare this proposal to the best known classical and hybrid classical-quantum algorithms. First, we show that the standard (non-recursive) QAOA fails to solve this optimization problem for most regular bipartite graphs at any constant level p : the approximation ratio achieved by QAOA is hardly better than assigning colors to vertices at random. Second, we construct an efficient classical simulation algorithm which simulates level- 1 QAOA and level- 1 RQAOA for arbitrary graphs. In particular, these hybrid algorithms give rise to efficient classical algorithms, and no benefit arising from the use of quantum mechanics is to be expected. Nevertheless, they provide a suitable testbed for assessing the potential benefit of hybrid algorithm: We use the simulation algorithm to perform large-scale simulation of level- 1 QAOA and RQAOA with up to 300 qutrits applied to ensembles of randomly generated 3 -colorable constant-degree graphs. We find that level- 1 RQAOA is surprisingly competitive: for the ensembles considered, its approximation ratios are often higher than those achieved by the best known generic classical algorithm based on rounding an SDP relaxation. This suggests the intriguing possibility that higher-level RQAOA may be a potentially useful algorithm for NISQ devices.
AbstractList We show how to apply the recursive quantum approximate optimization algorithm (RQAOA) to MAX-$k$-CUT, the problem of finding an approximate $k$-vertex coloring of a graph. We compare this proposal to the best known classical and hybrid classical-quantum algorithms. First, we show that the standard (non-recursive) QAOA fails to solve this optimization problem for most regular bipartite graphs at any constant level $p$: the approximation ratio achieved by QAOA is hardly better than assigning colors to vertices at random. Second, we construct an efficient classical simulation algorithm which simulates level-$1$ QAOA and level-$1$ RQAOA for arbitrary graphs. In particular, these hybrid algorithms give rise to efficient classical algorithms, and no benefit arising from the use of quantum mechanics is to be expected. Nevertheless, they provide a suitable testbed for assessing the potential benefit of hybrid algorithm: We use the simulation algorithm to perform large-scale simulation of level-$1$ QAOA and RQAOA with up to $300$ qutrits applied to ensembles of randomly generated $3$-colorable constant-degree graphs. We find that level-$1$ RQAOA is surprisingly competitive: for the ensembles considered, its approximation ratios are often higher than those achieved by the best known generic classical algorithm based on rounding an SDP relaxation. This suggests the intriguing possibility that higher-level RQAOA may be a potentially useful algorithm for NISQ devices.
We show how to apply the recursive quantum approximate optimization algorithm (RQAOA) to MAX- k -CUT, the problem of finding an approximate k -vertex coloring of a graph. We compare this proposal to the best known classical and hybrid classical-quantum algorithms. First, we show that the standard (non-recursive) QAOA fails to solve this optimization problem for most regular bipartite graphs at any constant level p : the approximation ratio achieved by QAOA is hardly better than assigning colors to vertices at random. Second, we construct an efficient classical simulation algorithm which simulates level- 1 QAOA and level- 1 RQAOA for arbitrary graphs. In particular, these hybrid algorithms give rise to efficient classical algorithms, and no benefit arising from the use of quantum mechanics is to be expected. Nevertheless, they provide a suitable testbed for assessing the potential benefit of hybrid algorithm: We use the simulation algorithm to perform large-scale simulation of level- 1 QAOA and RQAOA with up to 300 qutrits applied to ensembles of randomly generated 3 -colorable constant-degree graphs. We find that level- 1 RQAOA is surprisingly competitive: for the ensembles considered, its approximation ratios are often higher than those achieved by the best known generic classical algorithm based on rounding an SDP relaxation. This suggests the intriguing possibility that higher-level RQAOA may be a potentially useful algorithm for NISQ devices.
ArticleNumber 678
Author Kliesch, Alexander
Tang, Eugene
Bravyi, Sergey
Koenig, Robert
Author_xml – sequence: 1
  givenname: Sergey
  surname: Bravyi
  fullname: Bravyi, Sergey
  organization: IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
– sequence: 2
  givenname: Alexander
  surname: Kliesch
  fullname: Kliesch, Alexander
  organization: Zentrum Mathematik, Technical University of Munich, 85748 Garching, Germany
– sequence: 3
  givenname: Robert
  surname: Koenig
  fullname: Koenig, Robert
  organization: Institute for Advanced Study & Zentrum Mathematik, Technical University of Munich, 85748 Garching, Germany
– sequence: 4
  givenname: Eugene
  surname: Tang
  fullname: Tang, Eugene
  organization: Institute for Quantum Information and Matter, Caltech, Pasadena, CA 91125
BackLink https://www.osti.gov/biblio/1860281$$D View this record in Osti.gov
BookMark eNp1kE9LAzEQxYMoqNUP4G3xHs2_brJHLWoFwYuCtzA7m7SR7aZNUtBv72oVRPA0w_Dem8fvmOwPcXCEnHF2IYSU_HJDBROCMkklo7U2e-RITAWnUuiX_V_7ITnN-ZUxJoyua6OOyPX8vU2hqzZbGMp2RbGHnANCX0G_iCmU5SpXPqYK1usU38IKiqsWCdbLCmM_CobFCTnw0Gd3-j0n5Pn25mk2pw-Pd_ezqweKoqkNrVEbAMlrFLJtjfSyFaxBD6ZrFGuVqxvlW82UQ-6bKQBTLXNTpThIpxyXE3K_y-0ivNp1Grukdxsh2K9DTAsLqQTsnUWvtZpy0WnnVcN041vPnfHaNx2iwjHrfJcVcwk2YygOlxiHwWGx3NQjoM-HeifCFHNOzttRByXEoSQIveXMfuG3G_uJ3zJpJbMj_tHJ_zh_6v7v-QBAiIpT
CitedBy_id crossref_primary_10_1007_s10586_024_04686_y
crossref_primary_10_1016_j_engappai_2023_106668
crossref_primary_10_1103_PhysRevA_110_052435
crossref_primary_10_1088_1367_2630_acb5bc
crossref_primary_10_1109_TQE_2022_3151137
crossref_primary_10_1007_s10766_024_00781_0
crossref_primary_10_1007_s11433_022_2057_y
crossref_primary_10_3390_math11153423
crossref_primary_10_1007_s10288_023_00549_1
crossref_primary_10_2166_ws_2025_075
crossref_primary_10_1063_5_0237599
crossref_primary_10_1038_s41534_025_00982_6
crossref_primary_10_1109_TQE_2024_3386753
crossref_primary_10_1103_PhysRevResearch_7_023141
crossref_primary_10_1007_s11128_024_04438_2
crossref_primary_10_1103_PRXQuantum_5_020327
crossref_primary_10_1038_s41534_023_00733_5
crossref_primary_10_1038_s41598_022_20853_w
crossref_primary_10_1140_epjqt_s40507_023_00214_w
crossref_primary_10_1134_S0021364023604256
crossref_primary_10_1016_j_future_2024_107632
crossref_primary_10_1007_s42484_023_00125_0
crossref_primary_10_1007_s11128_024_04286_0
crossref_primary_10_1103_PhysRevResearch_5_033193
crossref_primary_10_1016_j_physrep_2024_03_002
crossref_primary_10_1103_3l96_41xf
crossref_primary_10_1109_TQE_2024_3481280
crossref_primary_10_1145_3711935
crossref_primary_10_1088_2058_9565_ad200a
crossref_primary_10_1109_TQE_2024_3443660
crossref_primary_10_1007_s00723_023_01544_9
crossref_primary_10_1088_2058_9565_ac7f4f
crossref_primary_10_1007_s10479_024_06253_5
crossref_primary_10_1109_TWC_2024_3523135
Cites_doi 10.1109/12.736440
10.48550/arXiv.1812.04170
10.1145/380752.380838
10.1103/PhysRevLett.125.260505
10.48550/arXiv.1411.4028
10.48550/arXiv.2010.14021
10.1103/PRXQuantum.2.030312
10.1007/BF02523688
10.48550/arXiv.2002.01068
10.1137/S0097539794270248
10.1002/rsa.20096
10.48550/arXiv.1712.05771
10.48550/arXiv.2005.08747
10.4230/OASIcs.SOSA.2018.13
10.1016/S0095-8956(81)80022-6
10.1137/S0097539705447372
10.1016/0012-365X(81)90023-6
10.1103/PhysRevA.97.022304
10.1145/227683.227684
10.4086/cjtcs.1997.002
10.1038/s41467-018-07090-4
10.1023/B:JOCO.0000038911.67280.3f
10.22331/q-2021-06-17-479
10.1109/HPEC.2019.8916288
ContentType Journal Article
DBID AAYXX
CITATION
OTOTI
DOA
DOI 10.22331/q-2022-03-30-678
DatabaseName CrossRef
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2521-327X
ExternalDocumentID oai_doaj_org_article_cf774512d7ef49079fbf1e8f7f9dcc4c
1860281
10_22331_q_2022_03_30_678
GroupedDBID AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
OTOTI
ID FETCH-LOGICAL-c2968-6c78aa316c23bb83f3b209cfa8d940b4e694fb704ec1f95aa04b0e5441a3e4e13
IEDL.DBID DOA
ISSN 2521-327X
IngestDate Fri Oct 03 12:46:37 EDT 2025
Mon Dec 23 02:08:11 EST 2024
Sat Nov 29 03:16:33 EST 2025
Tue Nov 18 21:25:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2968-6c78aa316c23bb83f3b209cfa8d940b4e694fb704ec1f95aa04b0e5441a3e4e13
Notes USDOE
SC0018407; PHY-1733907
OpenAccessLink https://doaj.org/article/cf774512d7ef49079fbf1e8f7f9dcc4c
ParticipantIDs doaj_primary_oai_doaj_org_article_cf774512d7ef49079fbf1e8f7f9dcc4c
osti_scitechconnect_1860281
crossref_citationtrail_10_22331_q_2022_03_30_678
crossref_primary_10_22331_q_2022_03_30_678
PublicationCentury 2000
PublicationDate 2022-03-30
PublicationDateYYYYMMDD 2022-03-30
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-30
  day: 30
PublicationDecade 2020
PublicationPlace Austria
PublicationPlace_xml – name: Austria
PublicationTitle Quantum (Vienna, Austria)
PublicationYear 2022
Publisher Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
Publisher_xml – name: Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
– name: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
References 11
22
12
23
13
14
15
16
17
18
19
0
1
2
3
4
5
6
7
8
9
20
10
21
References_xml – ident: 10
  doi: 10.1109/12.736440
– ident: 1
  doi: 10.48550/arXiv.1812.04170
– ident: 8
  doi: 10.1145/380752.380838
– ident: 2
  doi: 10.1103/PhysRevLett.125.260505
– ident: 6
  doi: 10.48550/arXiv.1411.4028
– ident: 19
  doi: 10.48550/arXiv.2010.14021
– ident: 15
  doi: 10.1103/PRXQuantum.2.030312
– ident: 7
  doi: 10.1007/BF02523688
– ident: 23
  doi: 10.48550/arXiv.2002.01068
– ident: 0
  doi: 10.1137/S0097539794270248
– ident: 3
  doi: 10.1002/rsa.20096
– ident: 17
  doi: 10.48550/arXiv.1712.05771
– ident: 5
  doi: 10.48550/arXiv.2005.08747
– ident: 16
  doi: 10.4230/OASIcs.SOSA.2018.13
– ident: 22
  doi: 10.1016/S0095-8956(81)80022-6
– ident: 12
  doi: 10.1137/S0097539705447372
– ident: 20
  doi: 10.1016/0012-365X(81)90023-6
– ident: 21
  doi: 10.1103/PhysRevA.97.022304
– ident: 9
  doi: 10.1145/227683.227684
– ident: 11
  doi: 10.4086/cjtcs.1997.002
– ident: 14
  doi: 10.1038/s41467-018-07090-4
– ident: 13
  doi: 10.1023/B:JOCO.0000038911.67280.3f
– ident: 4
  doi: 10.22331/q-2021-06-17-479
– ident: 18
  doi: 10.1109/HPEC.2019.8916288
SSID ssj0002876684
Score 2.5072103
Snippet We show how to apply the recursive quantum approximate optimization algorithm (RQAOA) to MAX- k -CUT, the problem of finding an approximate k -vertex coloring...
We show how to apply the recursive quantum approximate optimization algorithm (RQAOA) to MAX-$k$-CUT, the problem of finding an approximate $k$-vertex coloring...
SourceID doaj
osti
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 678
Title Hybrid quantum-classical algorithms for approximate graph coloring
URI https://www.osti.gov/biblio/1860281
https://doaj.org/article/cf774512d7ef49079fbf1e8f7f9dcc4c
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2521-327X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002876684
  issn: 2521-327X
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2521-327X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002876684
  issn: 2521-327X
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQYmBBIECUL2VgQorqxI5jj4BADFAxAOpm2RcbikpLoUWw8Nu5S0opCywsiWQ5SvTOzr2zz-8YO1AiKF9UKvUcXCqhCKkHqdIq5FxVIhZQbxfcXpSdju52zdVcqS_KCWvkgRvg2hCRoKBXqsoQJUZyJvqYBR3LaCoACfT3xda5YOqhXjIqldKy2cZEDyiy9ggHBAZedJyMEt71D0dU6_XjbYjzas6_nK2ylSkxTI6aD1pjC2Gwzo7P3-lEVTKaIACTxxSI6xKsievfDTGuv398SZB2JrU0-FsP6WdIag3qhNSoac1ug92cnV6fnKfTqgcp5EbpVEGpnROZglx4r0UUPucGotOVkdzLoIyMvuQyQBZN4RyXngcqJeZEkCETm2xxMByELZaUlYOC9HFy8CTc5aWJxnkoK6MVKNNi_AsCC1NJcKpM0bcYGtSo2ZEl1CwXVlAOmG6xw9kjT40exm-djwnXWUeSsq4b0MB2amD7l4FbbIesYpERkKwtUP4PjG1GxbN0tv0fr9hhy99jY5ctjp8nYY8tweu49_K8X48svF5-nH4CsI7U8Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+quantum-classical+algorithms+for+approximate+graph+coloring&rft.jtitle=Quantum+%28Vienna%2C+Austria%29&rft.au=Bravyi%2C+Sergey&rft.au=Kliesch%2C+Alexander&rft.au=Koenig%2C+Robert&rft.au=Tang%2C+Eugene&rft.date=2022-03-30&rft.pub=Verein+zur+Forderung+des+Open+Access+Publizierens+in+den+Quantenwissenschaften&rft.issn=2521-327X&rft.eissn=2521-327X&rft.volume=6&rft_id=info:doi/10.22331%2FQ-2022-03-30-678&rft.externalDocID=1860281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2521-327X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2521-327X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2521-327X&client=summon