An Improved Reliability-Based Decoding Algorithm for NB-LDPC Codes
When non-binary low-density parity-check (NB-LDPC) codes with low column weights are adopted, the iterative reliability-based majority-logic decoding (IRB-MLGD) algorithms suffer from severe performance degradation compared to message passing algorithms. In this brief, based on the improved iterativ...
Gespeichert in:
| Veröffentlicht in: | IEEE communications letters Jg. 25; H. 4; S. 1153 - 1157 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1089-7798, 1558-2558 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | When non-binary low-density parity-check (NB-LDPC) codes with low column weights are adopted, the iterative reliability-based majority-logic decoding (IRB-MLGD) algorithms suffer from severe performance degradation compared to message passing algorithms. In this brief, based on the improved iterative soft reliability-based (IISRB)-MLGD algorithm, we propose a perturbation-injected (P)-IISRB algorithm, where a regular perturbation is introduced to alleviate the periodic point problem that is the main reason for IISRB decoding failure. Compared with the conventional IISRB, the new algorithm significantly improves the decoding performance, lowering the error-floor by at least two orders of magnitude for the example code. Besides, instead of traditionally pre-computing and storing all the <inline-formula> <tex-math notation="LaTeX">q </tex-math></inline-formula>-ary channel reliability measures, a real-time computing method is presented, which reduces the memory cost from <inline-formula> <tex-math notation="LaTeX">\mathcal {O} </tex-math></inline-formula>(<inline-formula> <tex-math notation="LaTeX">q </tex-math></inline-formula>) to <inline-formula> <tex-math notation="LaTeX">\mathcal {O} </tex-math></inline-formula>(<inline-formula> <tex-math notation="LaTeX">\log _{2}q </tex-math></inline-formula>). |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1089-7798 1558-2558 |
| DOI: | 10.1109/LCOMM.2021.3049602 |