Video Summarization With Attention-Based Encoder-Decoder Networks

This paper addresses the problem of supervised video summarization by formulating it as a sequence-to-sequence learning problem, where the input is a sequence of original video frames, and the output is a keyshot sequence. Our key idea is to learn a deep summarization network with attention mechanis...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems for video technology Ročník 30; číslo 6; s. 1709 - 1717
Hlavní autoři: Ji, Zhong, Xiong, Kailin, Pang, Yanwei, Li, Xuelong
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1051-8215, 1558-2205
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper addresses the problem of supervised video summarization by formulating it as a sequence-to-sequence learning problem, where the input is a sequence of original video frames, and the output is a keyshot sequence. Our key idea is to learn a deep summarization network with attention mechanism to mimic the way of selecting the keyshots of human. To this end, we propose a novel video summarization framework named attentive encoder-decoder networks for video summarization (AVS), in which the encoder uses a bidirectional long short-term memory (BiLSTM) to encode the contextual information among the input video frames. As for the decoder, two attention-based LSTM networks are explored by using additive and multiplicative objective functions, respectively. Extensive experiments are conducted on two video summarization benchmark datasets, i.e., SumMe and TVSum. The results demonstrate the superiority of the proposed AVS-based approaches against the state-of-the-art approaches, with remarkable improvements on both datasets.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2019.2904996