Video Summarization With Attention-Based Encoder-Decoder Networks

This paper addresses the problem of supervised video summarization by formulating it as a sequence-to-sequence learning problem, where the input is a sequence of original video frames, and the output is a keyshot sequence. Our key idea is to learn a deep summarization network with attention mechanis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology Jg. 30; H. 6; S. 1709 - 1717
Hauptverfasser: Ji, Zhong, Xiong, Kailin, Pang, Yanwei, Li, Xuelong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1051-8215, 1558-2205
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses the problem of supervised video summarization by formulating it as a sequence-to-sequence learning problem, where the input is a sequence of original video frames, and the output is a keyshot sequence. Our key idea is to learn a deep summarization network with attention mechanism to mimic the way of selecting the keyshots of human. To this end, we propose a novel video summarization framework named attentive encoder-decoder networks for video summarization (AVS), in which the encoder uses a bidirectional long short-term memory (BiLSTM) to encode the contextual information among the input video frames. As for the decoder, two attention-based LSTM networks are explored by using additive and multiplicative objective functions, respectively. Extensive experiments are conducted on two video summarization benchmark datasets, i.e., SumMe and TVSum. The results demonstrate the superiority of the proposed AVS-based approaches against the state-of-the-art approaches, with remarkable improvements on both datasets.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2019.2904996