Parallel Improvements of the Jaya Optimization Algorithm

A wide range of applications use optimization algorithms to find an optimal value, often a minimum one, for a given function. Depending on the application, both the optimization algorithm’s behavior, and its computational time, can prove to be critical issues. In this paper, we present our efficient...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied sciences Ročník 8; číslo 5; s. 819
Hlavní autori: Migallón, Héctor, Jimeno-Morenilla, Antonio, Sanchez-Romero, Jose-Luis
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 18.05.2018
Predmet:
ISSN:2076-3417, 2076-3417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A wide range of applications use optimization algorithms to find an optimal value, often a minimum one, for a given function. Depending on the application, both the optimization algorithm’s behavior, and its computational time, can prove to be critical issues. In this paper, we present our efficient parallel proposals of the Jaya algorithm, a recent optimization algorithm that enables one to solve constrained and unconstrained optimization problems. We tested parallel Jaya algorithms for shared, distributed, and heterogeneous memory platforms, obtaining good parallel performance while leaving Jaya algorithm behavior unchanged. Parallel performance was analyzed using 30 unconstrained functions reaching a speed-up of up to 57.6 x using 60 processors. For all tested functions, the parallel distributed memory algorithm obtained parallel efficiencies that were nearly ideal, and combining it with the shared memory algorithm allowed us to obtain good parallel performance. The experimental results show a good parallel performance regardless of the nature of the function to be optimized.
AbstractList An field of intense work of the scientific community is artificial intelligence [26], in which neural-symbolic computation [27] is a key challenge, especially to construct computational cognitive models that admit integrated algorithms for learning and reasoning that can be treated computationally. [...]deep learning is not an optimization algorithm in itself, but the deep network has an objective function, so a heuristic optimization algorithm can be used to tune the network. [...]in [15], the authors explore the use of advanced optimization algorithms for determining optimum parameters for grating based sensors; in particular, Cuckoo search, PSO, TLBO, and Jaya algorithms were evaluated. [...]following parallel computation, the “sequential thread (or process)” obtains the best global solution and computes statistical values of all solutions obtained. [...]the conclusions obtained, through the comparison performed in [3] with respect to other well known optimization heuristic techniques, can be applied to the parallel proposals analyzed.
A wide range of applications use optimization algorithms to find an optimal value, often a minimum one, for a given function. Depending on the application, both the optimization algorithm’s behavior, and its computational time, can prove to be critical issues. In this paper, we present our efficient parallel proposals of the Jaya algorithm, a recent optimization algorithm that enables one to solve constrained and unconstrained optimization problems. We tested parallel Jaya algorithms for shared, distributed, and heterogeneous memory platforms, obtaining good parallel performance while leaving Jaya algorithm behavior unchanged. Parallel performance was analyzed using 30 unconstrained functions reaching a speed-up of up to 57.6 x using 60 processors. For all tested functions, the parallel distributed memory algorithm obtained parallel efficiencies that were nearly ideal, and combining it with the shared memory algorithm allowed us to obtain good parallel performance. The experimental results show a good parallel performance regardless of the nature of the function to be optimized.
Author Sanchez-Romero, Jose-Luis
Jimeno-Morenilla, Antonio
Migallón, Héctor
Author_xml – sequence: 1
  givenname: Héctor
  orcidid: 0000-0002-4937-0905
  surname: Migallón
  fullname: Migallón, Héctor
– sequence: 2
  givenname: Antonio
  orcidid: 0000-0002-3789-6475
  surname: Jimeno-Morenilla
  fullname: Jimeno-Morenilla, Antonio
– sequence: 3
  givenname: Jose-Luis
  orcidid: 0000-0001-8766-2813
  surname: Sanchez-Romero
  fullname: Sanchez-Romero, Jose-Luis
BookMark eNptkE9PwzAMxSM0JMbYhU9QiRtSwUmaNTlOE3-GJo0DnKs0dVmmtilJhjQ-PYUhgRC-PB9-tp_fKRl1rkNCzilcca7gWve9BAGSqiMyZpDPUp7RfPSrPyHTELYwlKJcUhgT-ai9bhpskmXbe_eGLXYxJK5O4gaTB73XybqPtrXvOlrXJfPmxXkbN-0ZOa51E3D6rRPyfHvztLhPV-u75WK-Sg1TIqYVziRHg6ZSCIZKZhSroAasBNaospkAnSuqWGkyKWQmuOGl5FqzUpq8yviEXBz2Du5edxhisXU73w0nC8YZlXkuhRqoywNlvAvBY1303rba7wsKxWc4xU84Awx_YGPj13vRa9v8N_IB5KpoqA
CitedBy_id crossref_primary_10_1007_s10278_022_00710_y
crossref_primary_10_1007_s00500_023_08261_2
crossref_primary_10_1007_s11227_019_02759_z
crossref_primary_10_1007_s11831_021_09585_8
crossref_primary_10_1007_s00202_024_02382_z
crossref_primary_10_1007_s11042_024_20182_2
crossref_primary_10_1155_2020_5287684
Cites_doi 10.1016/j.engappai.2017.03.001
10.1016/j.cad.2010.12.015
10.1016/j.enconman.2017.08.063
10.1007/978-3-662-45523-4
10.1016/j.engappai.2017.01.008
10.1016/j.enconman.2017.02.068
10.1080/0305215X.2017.1337755
10.1016/j.eswa.2012.08.039
10.1080/0952813X.2017.1309692
10.1109/TNNLS.2016.2603784
10.1016/j.swevo.2017.04.008
10.1016/j.advengsoft.2018.02.005
10.1016/j.neucom.2017.08.015
10.1080/10426914.2017.1415441
10.1016/j.apenergy.2018.02.131
10.1080/0305215X.2016.1164855
10.1016/j.knosys.2014.02.002
10.1016/j.asoc.2017.12.041
10.1109/TSTE.2016.2570256
10.1016/j.ijleo.2018.03.062
10.1016/j.ijthermalsci.2017.09.015
10.1016/j.advengsoft.2012.11.019
10.1016/j.eswa.2016.10.010
10.1016/j.energy.2017.04.059
10.1155/2012/756023
10.1007/s00366-016-0484-8
ContentType Journal Article
Copyright 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.3390/app8050819
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID 10_3390_app8050819
GeographicLocations Germany
Spain
GeographicLocations_xml – name: Spain
– name: Germany
GroupedDBID .4S
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IPNFZ
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
RIG
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c295t-de683ececd9e0c182c92d0f0ed5efe94650a79192bc4858453c3b83aa2b8c7d43
IEDL.DBID BENPR
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000437326800166&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Mon Oct 20 03:04:03 EDT 2025
Sat Nov 29 07:13:26 EST 2025
Tue Nov 18 20:56:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-de683ececd9e0c182c92d0f0ed5efe94650a79192bc4858453c3b83aa2b8c7d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3789-6475
0000-0002-4937-0905
0000-0001-8766-2813
OpenAccessLink https://www.proquest.com/docview/2321877859?pq-origsite=%requestingapplication%
PQID 2321877859
PQPubID 2032433
ParticipantIDs proquest_journals_2321877859
crossref_primary_10_3390_app8050819
crossref_citationtrail_10_3390_app8050819
PublicationCentury 2000
PublicationDate 2018-05-18
PublicationDateYYYYMMDD 2018-05-18
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-18
  day: 18
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2018
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wang (ref_9) 2018; 272
Cisek (ref_12) 2018; 123
(ref_16) 2018; 119
Ruiz (ref_29) 2014; 68
ref_36
ref_35
Kurada (ref_33) 2016; 3
ref_34
Singh (ref_17) 2018; 217
Traore (ref_30) 2017; 72
Tran (ref_26) 2018; 29
Abhishek (ref_8) 2016; 33
ref_37
Rao (ref_32) 2017; 49
Choudhary (ref_13) 2018; 33
Gambhir (ref_15) 2018; 164
Chen (ref_31) 2013; 66
Rao (ref_19) 2017; 37
Rao (ref_7) 2017; 61
Wang (ref_11) 2018; 65
Umbarkar (ref_21) 2015; 7
Rao (ref_2) 2011; 43
Lin (ref_1) 2012; 2012
Mishra (ref_5) 2016; 7
ref_25
Yu (ref_14) 2017; 150
ref_24
Rigal (ref_28) 2013; 40
Rao (ref_3) 2016; 7
Umbarkar (ref_22) 2015; 1
Rao (ref_18) 2017; 128
ref_27
Ghavidel (ref_10) 2018; 50
Ortega (ref_23) 2014; 1
Singh (ref_4) 2017; 60
Rao (ref_6) 2017; 140
Rao (ref_20) 2017; 29
References_xml – volume: 61
  start-page: 103
  year: 2017
  ident: ref_7
  article-title: A multi-objective algorithm for optimization of modern machining processes
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.03.001
– volume: 43
  start-page: 303
  year: 2011
  ident: ref_2
  article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Comput.-Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– volume: 150
  start-page: 742
  year: 2017
  ident: ref_14
  article-title: Parameters identification of photovoltaic models using an improved JAYA optimization algorithm
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.08.063
– ident: ref_24
  doi: 10.1007/978-3-662-45523-4
– volume: 3
  start-page: 35
  year: 2016
  ident: ref_33
  article-title: Automatic Unsupervised Data Classification Using Jaya Evolutionary Algorithm
  publication-title: Adv. Comput. Intell. Int. J.
– volume: 60
  start-page: 35
  year: 2017
  ident: ref_4
  article-title: Analytic hierarchy process based automatic generation control of multi-area interconnected power system using Jaya algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.01.008
– volume: 140
  start-page: 24
  year: 2017
  ident: ref_6
  article-title: Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.02.068
– ident: ref_34
– volume: 7
  start-page: 19
  year: 2015
  ident: ref_21
  article-title: OpenMP Teaching-Learning Based Optimization Algorithm over Multi-Core System
  publication-title: Int. J. Intell. Syst. Appl.
– volume: 50
  start-page: 698
  year: 2018
  ident: ref_10
  article-title: A hybrid Jaya algorithm for reliability–redundancy allocation problems
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2017.1337755
– volume: 40
  start-page: 1034
  year: 2013
  ident: ref_28
  article-title: Mining association rules for the quality improvement of the production process
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.08.039
– volume: 29
  start-page: 1099
  year: 2017
  ident: ref_20
  article-title: Optimisation of welding processes using quasi-oppositional-based Jaya algorithm
  publication-title: J. Exp. Theor. Artif. Intell.
  doi: 10.1080/0952813X.2017.1309692
– ident: ref_37
– volume: 1
  start-page: 9
  year: 2014
  ident: ref_23
  article-title: Comparing multicore implementations of evolutionary meta-heuristics for transportation problems
  publication-title: Ann. Multicore GPU Program.
– volume: 29
  start-page: 246
  year: 2018
  ident: ref_26
  article-title: Deep Logic Networks: Inserting and Extracting Knowledge From Deep Belief Networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2603784
– ident: ref_35
– volume: 37
  start-page: 1
  year: 2017
  ident: ref_19
  article-title: A self-adaptive multi-population based Jaya algorithm for engineering optimization
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2017.04.008
– volume: 119
  start-page: 48
  year: 2018
  ident: ref_16
  article-title: An efficient approach for optimal sensor placement and damage identification in laminated composite structures
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2018.02.005
– volume: 272
  start-page: 668
  year: 2018
  ident: ref_9
  article-title: Intelligent facial emotion recognition based on stationary wavelet entropy and Jaya algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.015
– volume: 33
  start-page: 759
  year: 2018
  ident: ref_13
  article-title: Investigating effects of resistance wire heating on AISI 1023 weldment characteristics during ASAW
  publication-title: Mater. Manuf. Process.
  doi: 10.1080/10426914.2017.1415441
– volume: 7
  start-page: 19
  year: 2016
  ident: ref_3
  article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems
  publication-title: Int. J. Ind. Eng. Comput.
– volume: 217
  start-page: 537
  year: 2018
  ident: ref_17
  article-title: Integration of new evolutionary approach with artificial neural network for solving short term load forecast problem
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.02.131
– ident: ref_25
– volume: 49
  start-page: 60
  year: 2017
  ident: ref_32
  article-title: A new optimization algorithm for solving complex constrained design optimization problems
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2016.1164855
– volume: 68
  start-page: 4
  year: 2014
  ident: ref_29
  article-title: Generating knowledge in maintenance from Experience Feedback
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.02.002
– ident: ref_27
– volume: 65
  start-page: 12
  year: 2018
  ident: ref_11
  article-title: A GPU-accelerated parallel Jaya algorithm for efficiently estimating Li-ion battery model parameters
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.12.041
– volume: 7
  start-page: 1672
  year: 2016
  ident: ref_5
  article-title: Power quality improvement using photovoltaic fed DSTATCOM based on JAYA optimization
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2016.2570256
– volume: 1
  start-page: 59
  year: 2015
  ident: ref_22
  article-title: OpenMP Dual Population Genetic Algorithm for Solving Constrained Optimization Problems
  publication-title: Int. J. Inf. Eng. Electron. Business
– volume: 164
  start-page: 567
  year: 2018
  ident: ref_15
  article-title: Advanced optimization algorithms for grating based sensors: A comparative analysis
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.03.062
– volume: 123
  start-page: 162
  year: 2018
  ident: ref_12
  article-title: Thermal performance optimization of the underground power cable system by using a modified Jaya algorithm
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2017.09.015
– volume: 66
  start-page: 24
  year: 2013
  ident: ref_31
  article-title: Application of data mining in a global optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2012.11.019
– ident: ref_36
– volume: 72
  start-page: 443
  year: 2017
  ident: ref_30
  article-title: Data mining techniques on satellite images for discovery of risk areas
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.10.010
– volume: 128
  start-page: 785
  year: 2017
  ident: ref_18
  article-title: Constrained economic optimization of shell-and-tube heat exchangers using elitist-Jaya algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2017.04.059
– volume: 2012
  start-page: 756023
  year: 2012
  ident: ref_1
  article-title: A Review of Deterministic Optimization Methods in Engineering and Management
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2012/756023
– volume: 33
  start-page: 457
  year: 2016
  ident: ref_8
  article-title: Application of JAYA algorithm for the optimization of machining performance characteristics during the turning of CFRP (epoxy) composites: comparison with TLBO, GA, and ICA
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-016-0484-8
SSID ssj0000913810
Score 2.1354704
Snippet A wide range of applications use optimization algorithms to find an optimal value, often a minimum one, for a given function. Depending on the application,...
An field of intense work of the scientific community is artificial intelligence [26], in which neural-symbolic computation [27] is a key challenge, especially...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 819
SubjectTerms Data mining
Design optimization
Genetic algorithms
Heuristic
Linear algebra
Methods
Optimization algorithms
Population
Software
Title Parallel Improvements of the Jaya Optimization Algorithm
URI https://www.proquest.com/docview/2321877859
Volume 8
WOSCitedRecordID wos000437326800166&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwEA66-aAP6qbidI6APriHYtu0a_IkUzZUdBZRmE8lTVIV9su1Cv73XtpscyC--FRKAy13l7vv7tLvEDpJFGdc-K4lAFxbHgQMi0NUsAIOaFY4TiwLntnboNej_T4LTcEtNccqZz4xd9RyLHSN_Awiv0ODgPrsfPJu6alRurtqRmisorJmKgM7L190euHDvMqiWS-pYxe8pATye90XpravA-FyJFp2xHl06W7997u20abBlbhdGEIFrahRFW38YBusoorZxyk-NWTTzR1EQz7V41QGuCgv5NXCFI8TDMgQ3_Avju_BqwzN75q4PXiBt2evw1301O08Xl5ZZpqCJVzmZ5ZULUqUUEIyZQtIKwRzpZ3YSvoqUcwDqMYDBoAvFh4FWOITQWJKOHdjKgLpkT1UGo1Hah9hwoRLW45DQJkeF5LHilOqXJbIJIFrDTVnko2EoRrXEy8GEaQcWgvRQgs1dDxfOykINn5dVZ9JPzKbLI0Woj_4-_EhWgecQ3XT36F1VMqmH-oIrYnP7C2dNozNNPJ0HO7C67vw-Ru-rM-w
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BQQIO7IgdS4BEDxFJnDT2ASHEIkpL6QGkcgqO7QBSF2gKqD_FNzJuEqAS4saBUw6xIjkzeu95bL8B2Im14EL6riVRXFseEoYlkBWsQKCalY4TqdRnthrUaqzR4PUReM_vwphjlTkmDoBadaSpke8j8zssCJjPD5-eLdM1yuyu5i000rSo6P4bLtmSg_IJxnfXdc9Or4_PrayrgCVd7vcspUuMaqml4tqWKK8ld5Ud21r5OtbcQ8kiAo7CJ5IeQ3r2qaQRo0K4EZOB8ih-dxTGPJPsBRirly_rt59VHeOyyRw79UGllNtmH5rZviHeYeYbBv4Bm53N_Lf_MAvTmW4mR2miz8GIbs_D1Dc3xXmYy3AqIXuZmXZxAVhddE27mCZJyyeDamhCOjFB5UsuRF-QK0TNVnYdlRw173G2vYfWItz8yXyWoNDutPUyEMqly0qOQzFZPSGViLRgTLs8VnGMzxUo5pEMZWalbjp6NENcUpmoh19RX4Htz7FPqYHIj6PW82iHGYgk4VeoV39_vQUT59eX1bBarlXWYBI1HTMHHBy2DoVe90VvwLh87T0m3c0sXwnc_XVqfACh9SvK
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS-wwFD7oKKILn1eu74AKuii2SWuThYiog-Nj7EJBV71pkt57YZzR6aj41_x1nkxTHyDuXLjqoqGQnq_n-3KafAdgLTdSSBVRT6G49kIkDE8iK3ixRDWrgiDTpc_sadxs8qsrkQzAc3UWxm6rrHJiP1HrjrI18i1k_oDHMY_EVu62RSQH9d3bO892kLJ_Wqt2GiVETszTIy7fip3GAcZ6ndL64cX-kec6DHiKiqjnabPNmVFGaWF8hVJbCar93Dc6MrkRIcoXGQsUQZkKOVJ1xBTLOJOSZlzFOmT43EEYQkke0hoMJY2z5Pq1wmMdN3ngl56ojAnf_pPmfmRJ-CMLfiSBPrPVJ37yO5mEcaenyV75AUzBgGlPw9g7l8VpmHL5qyAbzmR7cwZ4Iru2jUyLlGWVfpW0IJ2coCImx_JJknPMpjfumCrZa_3F2fb-3fyCy2-ZzyzU2p22-Q2ECUX5dhAwBHEolZaZkZwbKnKd53idg80qqqlyFuu200crxaWWRUD6hoA5WH0de1sai3w6arGKfOqSS5G-hX3-69srMIJ4SE8bzZMFGEWpx-2-h4AvQq3XvTdLMKweev-L7rKDLoE_342MF2qTNIo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Improvements+of+the+Jaya+Optimization+Algorithm&rft.jtitle=Applied+sciences&rft.au=Migall%C3%B3n%2C+H%C3%A9ctor&rft.au=Jimeno-Morenilla%2C+Antonio&rft.au=Sanchez-Romero%2C+Jose-Luis&rft.date=2018-05-18&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=8&rft.issue=5&rft_id=info:doi/10.3390%2Fapp8050819&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon