RB-Net: Training Highly Accurate and Efficient Binary Neural Networks With Reshaped Point-Wise Convolution and Balanced Activation

In this paper, we find that the conventional convolution operation becomes the bottleneck for extremely efficient binary neural networks (BNNs). To address this issue, we open up a new direction by introducing a reshaped point-wise convolution (RPC) to replace the conventional one to build BNNs. Spe...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems for video technology Vol. 32; no. 9; pp. 6414 - 6424
Main Authors: Liu, Chunlei, Ding, Wenrui, Chen, Peng, Zhuang, Bohan, Wang, Yufeng, Zhao, Yang, Zhang, Baochang, Han, Yuqi
Format: Journal Article
Language:English
Published: New York IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1051-8215, 1558-2205
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we find that the conventional convolution operation becomes the bottleneck for extremely efficient binary neural networks (BNNs). To address this issue, we open up a new direction by introducing a reshaped point-wise convolution (RPC) to replace the conventional one to build BNNs. Specifically, we conduct a point-wise convolution after rearranging the spatial information into depth, with which at least <inline-formula> <tex-math notation="LaTeX">2.25\times </tex-math></inline-formula> computation reduction can be achieved. Such an efficient RPC allows us to explore more powerful representational capacity of BNNs under a given computation complexity budget. Moreover, we propose to use a balanced activation (BA) to adjust the distribution of the scaled activations after binarization, which enables significant performance improvement of BNNs. After integrating RPC and BA, the proposed network, dubbed as RB-Net, strikes a good trade-off between accuracy and efficiency, achieving superior performance with lower computational cost against the state-of-the-art BNN methods. Specifically, our RB-Net achieves 66.8% Top-1 accuracy with ResNet-18 backbone on ImageNet, exceeding the state-of-the-art Real-to-Binary Net (65.4%) by 1.4% while achieving more than <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> reduction (52M vs. 165M) in computational complexity.
AbstractList In this paper, we find that the conventional convolution operation becomes the bottleneck for extremely efficient binary neural networks (BNNs). To address this issue, we open up a new direction by introducing a reshaped point-wise convolution (RPC) to replace the conventional one to build BNNs. Specifically, we conduct a point-wise convolution after rearranging the spatial information into depth, with which at least <inline-formula> <tex-math notation="LaTeX">2.25\times </tex-math></inline-formula> computation reduction can be achieved. Such an efficient RPC allows us to explore more powerful representational capacity of BNNs under a given computation complexity budget. Moreover, we propose to use a balanced activation (BA) to adjust the distribution of the scaled activations after binarization, which enables significant performance improvement of BNNs. After integrating RPC and BA, the proposed network, dubbed as RB-Net, strikes a good trade-off between accuracy and efficiency, achieving superior performance with lower computational cost against the state-of-the-art BNN methods. Specifically, our RB-Net achieves 66.8% Top-1 accuracy with ResNet-18 backbone on ImageNet, exceeding the state-of-the-art Real-to-Binary Net (65.4%) by 1.4% while achieving more than <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> reduction (52M vs. 165M) in computational complexity.
In this paper, we find that the conventional convolution operation becomes the bottleneck for extremely efficient binary neural networks (BNNs). To address this issue, we open up a new direction by introducing a reshaped point-wise convolution (RPC) to replace the conventional one to build BNNs. Specifically, we conduct a point-wise convolution after rearranging the spatial information into depth, with which at least [Formula Omitted] computation reduction can be achieved. Such an efficient RPC allows us to explore more powerful representational capacity of BNNs under a given computation complexity budget. Moreover, we propose to use a balanced activation (BA) to adjust the distribution of the scaled activations after binarization, which enables significant performance improvement of BNNs. After integrating RPC and BA, the proposed network, dubbed as RB-Net, strikes a good trade-off between accuracy and efficiency, achieving superior performance with lower computational cost against the state-of-the-art BNN methods. Specifically, our RB-Net achieves 66.8% Top-1 accuracy with ResNet-18 backbone on ImageNet, exceeding the state-of-the-art Real-to-Binary Net (65.4%) by 1.4% while achieving more than [Formula Omitted] reduction (52M vs. 165M) in computational complexity.
Author Ding, Wenrui
Wang, Yufeng
Zhang, Baochang
Liu, Chunlei
Chen, Peng
Zhao, Yang
Zhuang, Bohan
Han, Yuqi
Author_xml – sequence: 1
  givenname: Chunlei
  surname: Liu
  fullname: Liu, Chunlei
  organization: School of Electrical and Information Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Wenrui
  orcidid: 0000-0001-5490-4724
  surname: Ding
  fullname: Ding, Wenrui
  organization: Unmanned System Research Institute, Beihang University, Beijing, China
– sequence: 3
  givenname: Peng
  surname: Chen
  fullname: Chen, Peng
  organization: Australian Institute for Machine Learning (AIML), The University of Adelaide, Adelaide, SA, Australia
– sequence: 4
  givenname: Bohan
  surname: Zhuang
  fullname: Zhuang, Bohan
  organization: Department of Information Tehnology, Monash University Clayton Campus, Melbourne, VIC, Australia
– sequence: 5
  givenname: Yufeng
  orcidid: 0000-0001-8713-3153
  surname: Wang
  fullname: Wang, Yufeng
  organization: Australian Institute for Machine Learning (AIML), The University of Adelaide, Adelaide, SA, Australia
– sequence: 6
  givenname: Yang
  orcidid: 0000-0001-5252-658X
  surname: Zhao
  fullname: Zhao, Yang
  organization: Australian Institute for Machine Learning (AIML), The University of Adelaide, Adelaide, SA, Australia
– sequence: 7
  givenname: Baochang
  orcidid: 0000-0001-7396-6218
  surname: Zhang
  fullname: Zhang, Baochang
  organization: Institute of Artificial Intelligence, Beihang University, Beijing, China
– sequence: 8
  givenname: Yuqi
  orcidid: 0000-0001-7905-0163
  surname: Han
  fullname: Han, Yuqi
  email: yuqi_han@tsinghua.edu.cn
  organization: Department of Computer Science and Technology, Tsinghua University, Beijing, China
BookMark eNp9kEFPGzEQha0KpALtH6AXSz1vsL2x1-4tiWiphCiCFI6r2c2YmG7tYDsgrvxynAT10AOnGc2890bzHZI9HzwScszZiHNmTuaz65v5SDAhRjVXSrP6AzngUupKCCb3Ss8kr7Tg8iM5TOmeMT7W4-aAvFxNqwvM3-g8gvPO39Ezd7ccnumk79cRMlLwC3pqresd-kynzkN8phdYlkMp-SnEP4neurykV5iWsMIFvQzO5-rWJaSz4B_DsM4u-G3SFAbwfdFM-uweYTP_RPYtDAk_v9Uj8vv76Xx2Vp3_-vFzNjmvemFkrhbQWSNFo2XNNDd2gQqtMKCxAWu47iwHQGEBpFJKdkZ1VjX1uJNjBqY29RH5ustdxfCwxpTb-7COvpxsRcMMlyVVF5XYqfoYUopo21V0f8vPLWfthnW7Zd1uWLdvrItJ_2fqXd4-lwvW4X3rl53VIeK_W6aRijFWvwLXIpAK
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TCSVT_2023_3301962
crossref_primary_10_1109_TCSVT_2023_3288572
crossref_primary_10_3390_rs14215347
crossref_primary_10_1109_TCSVT_2023_3279281
crossref_primary_10_1109_TCSVT_2023_3286072
crossref_primary_10_1007_s10489_024_06039_z
crossref_primary_10_1109_TGRS_2025_3540784
crossref_primary_10_26599_BDMA_2024_9020087
crossref_primary_10_1007_s11554_023_01366_9
crossref_primary_10_1109_TNSRE_2023_3321414
crossref_primary_10_1109_ACCESS_2023_3258360
crossref_primary_10_1109_TCSVT_2024_3399311
crossref_primary_10_3390_s23042250
crossref_primary_10_3390_s24248190
crossref_primary_10_1109_TCSVT_2022_3216389
crossref_primary_10_1109_JSTARS_2022_3216564
crossref_primary_10_3389_fnins_2022_1080521
crossref_primary_10_3390_electronics13020266
crossref_primary_10_3390_s24010181
crossref_primary_10_1109_LGRS_2023_3308582
Cites_doi 10.1109/ICCV.2017.155
10.1109/CVPR.2019.00050
10.1109/CVPR.2019.00448
10.1109/CVPR.2018.00452
10.1145/3343031.3350534
10.1609/aaai.v33i01.33018344
10.1109/CVPR.2018.00826
10.1007/978-3-030-01267-0_44
10.1109/CVPR.2016.90
10.1109/CVPR.2018.00286
10.1109/TCSVT.2019.2911674
10.1109/CVPR.2018.00716
10.1109/ICCV.2019.00501
10.1109/ICASSP.2018.8461456
10.1007/978-3-030-01237-3_23
10.1109/TCSVT.2019.2896095
10.1007/978-3-030-58568-6_9
10.1109/TCSI.2019.2958937
10.1109/ICCV.2019.00495
10.1007/978-3-319-46493-0_32
10.1109/CVPR.2019.01167
10.1109/TCSVT.2020.3040367
10.1109/TCSVT.2020.2996231
10.1109/TCSVT.2021.3095970
10.1109/CVPR.2019.00066
10.1609/aaai.v31i1.10862
10.1007/s11263-015-0816-y
10.1109/CVPR.2017.574
10.1109/CVPR.2018.00474
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2022.3166803
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 6424
ExternalDocumentID 10_1109_TCSVT_2022_3166803
9756000
Genre orig-research
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2021TQ0177
  funderid: 10.13039/501100002858
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-dabf95278530819fde6ef29a8e7af918bf1aae2faa56665b96bf6734b540a9393
IEDL.DBID RIE
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000849300000056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-8215
IngestDate Sun Nov 30 04:06:40 EST 2025
Sat Nov 29 01:44:18 EST 2025
Tue Nov 18 21:31:34 EST 2025
Wed Aug 27 02:14:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-dabf95278530819fde6ef29a8e7af918bf1aae2faa56665b96bf6734b540a9393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7396-6218
0000-0001-5252-658X
0000-0001-7905-0163
0000-0001-8713-3153
0000-0001-5490-4724
PQID 2709158198
PQPubID 85433
PageCount 11
ParticipantIDs crossref_primary_10_1109_TCSVT_2022_3166803
ieee_primary_9756000
proquest_journals_2709158198
crossref_citationtrail_10_1109_TCSVT_2022_3166803
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref16
Bethge (ref18) 2020
ref19
Zhou (ref23) 2017
Darabi (ref41) 2018
Courbariaux (ref8) 2016
Howard (ref21) 2017
ref51
ref48
Bulat (ref10) 2019
ref47
Zhou (ref7) 2016
ref43
Martinez (ref17)
Ridnik (ref45) 2020
ref9
Mishra (ref26) 2017
ref4
ref3
ref6
ref5
Helwegen (ref35)
Qin (ref22) 2019
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref1
Choi (ref25) 2018
ref39
Krizhevsky (ref42); 25
Yu (ref44)
Hinton (ref40) 2012
Wu (ref46)
ref24
ref20
Bulat (ref37) 2019
ref28
ref27
ref29
Kingma (ref49) 2014
Hou (ref38) 2016
Simonyan (ref50) 2014
References_xml – year: 2019
  ident: ref22
  article-title: Forward and backward information retention for accurate binary neural networks
  publication-title: arXiv:1909.10788
– ident: ref32
  doi: 10.1109/ICCV.2017.155
– ident: ref14
  doi: 10.1109/CVPR.2019.00050
– year: 2016
  ident: ref7
  article-title: DoReFa-Net: Training low bitwidth convolutional neural networks with low bitwidth gradients
  publication-title: arXiv:1606.06160
– ident: ref30
  doi: 10.1109/CVPR.2019.00448
– ident: ref29
  doi: 10.1109/CVPR.2018.00452
– ident: ref31
  doi: 10.1145/3343031.3350534
– volume-title: ICLR
  ident: ref17
  article-title: Training binary neural networks with real-to-binary convolutions
– year: 2020
  ident: ref18
  article-title: MeliusNet: Can binary neural networks achieve MobileNet-level accuracy?
  publication-title: arXiv:2001.05936
– year: 2019
  ident: ref37
  article-title: XNOR-Net++: Improved binary neural networks
  publication-title: arXiv:1909.13863
– ident: ref36
  doi: 10.1609/aaai.v33i01.33018344
– ident: ref16
  doi: 10.1109/CVPR.2018.00826
– year: 2019
  ident: ref10
  article-title: Matrix and tensor decompositions for training binary neural networks
  publication-title: arXiv:1904.07852
– ident: ref13
  doi: 10.1007/978-3-030-01267-0_44
– year: 2018
  ident: ref41
  article-title: Regularized binary network training
  publication-title: arXiv:1812.11800
– ident: ref48
  doi: 10.1109/CVPR.2016.90
– year: 2017
  ident: ref23
  article-title: Incremental network quantization: Towards lossless CNNs with low-precision weights
  publication-title: arXiv:1702.03044
– year: 2020
  ident: ref45
  article-title: TResNet: High performance GPU-dedicated architecture
  publication-title: arXiv:2003.13630
– ident: ref34
  doi: 10.1109/CVPR.2018.00286
– ident: ref5
  doi: 10.1109/TCSVT.2019.2911674
– year: 2016
  ident: ref8
  article-title: Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or −1
  publication-title: arXiv:1602.02830
– ident: ref33
  doi: 10.1109/CVPR.2018.00716
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref44
  article-title: Multi-scale context aggregation by dilated convolutions
– year: 2014
  ident: ref49
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref39
  doi: 10.1109/ICCV.2019.00501
– ident: ref11
  doi: 10.1109/ICASSP.2018.8461456
– ident: ref24
  doi: 10.1007/978-3-030-01237-3_23
– ident: ref2
  doi: 10.1109/TCSVT.2019.2896095
– ident: ref19
  doi: 10.1007/978-3-030-58568-6_9
– volume: 25
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref42
  article-title: ImageNet classification with deep convolutional neural networks
– ident: ref1
  doi: 10.1109/TCSI.2019.2958937
– ident: ref27
  doi: 10.1109/ICCV.2019.00495
– year: 2016
  ident: ref38
  article-title: Loss-aware binarization of deep networks
  publication-title: arXiv:1611.01600
– ident: ref12
  doi: 10.1007/978-3-319-46493-0_32
– year: 2012
  ident: ref40
  article-title: Coursera lectures: Neural networks for machine learning
– year: 2014
  ident: ref50
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– ident: ref15
  doi: 10.1109/CVPR.2019.01167
– year: 2017
  ident: ref26
  article-title: WRPN: Wide reduced-precision networks
  publication-title: arXiv:1709.01134
– year: 2017
  ident: ref21
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv:1704.04861
– start-page: 1194
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref46
  article-title: Convolution with even-sized kernels and symmetric padding
– ident: ref3
  doi: 10.1109/TCSVT.2020.3040367
– ident: ref4
  doi: 10.1109/TCSVT.2020.2996231
– ident: ref6
  doi: 10.1109/TCSVT.2021.3095970
– ident: ref51
  doi: 10.1109/CVPR.2019.00066
– ident: ref20
  doi: 10.1007/978-3-030-58568-6_9
– ident: ref9
  doi: 10.1609/aaai.v31i1.10862
– ident: ref47
  doi: 10.1007/s11263-015-0816-y
– ident: ref28
  doi: 10.1109/CVPR.2017.574
– ident: ref43
  doi: 10.1109/CVPR.2018.00474
– start-page: 7531
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref35
  article-title: Latent weights do not exist: Rethinking binarized neural network optimization
– year: 2018
  ident: ref25
  article-title: PACT: Parameterized clipping activation for quantized neural networks
  publication-title: arXiv:1805.06085
SSID ssj0014847
Score 2.5229845
Snippet In this paper, we find that the conventional convolution operation becomes the bottleneck for extremely efficient binary neural networks (BNNs). To address...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6414
SubjectTerms Accuracy
balanced activation
Binary neural network
Complexity
Computational efficiency
Computing costs
Convolution
Kernel
Neural networks
object classification
Remote procedure calls
reshaped point-wise convolution
Spatial data
Spatial databases
Training
Title RB-Net: Training Highly Accurate and Efficient Binary Neural Networks With Reshaped Point-Wise Convolution and Balanced Activation
URI https://ieeexplore.ieee.org/document/9756000
https://www.proquest.com/docview/2709158198
Volume 32
WOSCitedRecordID wos000849300000056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014847
  issn: 1051-8215
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxELVo1EN7AApUBNLKh96KIev9sM0tiYJ6qCJEA-S28qeIhDYo2UTiyi_H4_VGSK0qcdvDeLSr5915s555g9APECWSHPTtcl6QzKYFEZlQRHky0ZdAYF1A-jebTPhsJq530Nm2F8ZaG4rP7DlchrN8s9Br-FV2IRjEZ5-gf2CMNb1a2xODjIdhYp4uJIT7ONY2yPTFxXT0527qU0FKfYZaFLwdkBWDUJiq8tenOMSXq7333dk-2o08Eg8a4L-gHVsdoM9v1AUP0cvNkExsfYmncQwEhqKOx2c80HoNChFYVgaPg4aE946HoTUXg1yH9zxp6sNX-H5eP-AbOBl6sgZfL-ZVTe7nK4tHi2oTN27wNIQqSe1tBrqdmXaEbq_G09EvEkcuEE1FXhMjlRM5ZT6IA1dwxhbWUSG5ZdKJhCuXSGmpk9LTwCJXolCuYGmmPPGTIhXpV9SpFpU9Rpjr1CllsgQkcLhgwvhkjGeUGs-gMmG6KGkxKHXUI4exGI9lyEv6ogy4lYBbGXHrop_bNU-NGsd_rQ8Bqa1lBKmLei3UZXxhVyVlnjjl_pH5yb9XnaJP4LspL-uhTr1c22_oo97U89Xye9iLr5Ji2xs
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0hQGo5AC2tWEqLD721LhvHSezedlcgULcRomnhFvlTXQllEZtF4sovx3acVSWqSr3l4DiJnpN5E8-8B_DRixIJ5vXtMpZjatIcc8ollo5MDIUnsDYgPS3Kkl1f84s1-LzqhTHGhOIz88Ufhr18PVdL_6vsmBc-PrsEfSOjlCRdt9Zqz4CyYCfmCEOCmYtkfYvMkB9Xkx-_KpcMEuJy1DxnvUVWDEPBV-XZxzhEmNOd_7u3XdiOTBKNOuhfwZppXsPWH_qCe_B4Ocalab-iKhpBIF_WcfOARkotvUYEEo1GJ0FFws2OxqE5F3nBDjdz2VWIL9DVrP2NLv3e0K3R6GI-a1p8NVsYNJk393HphpnGvk5SuTEj1bumvYGfpyfV5AxH0wWsCM9arIW0PCOFC-OeLVhtcmMJF8wUwvKESZsIYYgVwhHBPJM8lzYvUiod9RM85elbWG_mjdkHxFRqpdQ08SI4jBdcu3SMUUK041CU6wEkPQa1iork3hjjpg6ZyZDXAbfa41ZH3AbwaXXObafH8c_Rex6p1cgI0gAOe6jr-MoualI46pS5R2YHfz_rCF6cVd-n9fS8_PYOXvrrdMVmh7De3i3Ne9hU9-1scfchrMsnHTreYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RB-Net%3A+Training+Highly+Accurate+and+Efficient+Binary+Neural+Networks+With+Reshaped+Point-Wise+Convolution+and+Balanced+Activation&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Liu%2C+Chunlei&rft.au=Ding%2C+Wenrui&rft.au=Chen%2C+Peng&rft.au=Zhuang%2C+Bohan&rft.date=2022-09-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=32&rft.issue=9&rft.spage=6414&rft.epage=6424&rft_id=info:doi/10.1109%2FTCSVT.2022.3166803&rft.externalDocID=9756000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon