RB-Net: Training Highly Accurate and Efficient Binary Neural Networks With Reshaped Point-Wise Convolution and Balanced Activation
In this paper, we find that the conventional convolution operation becomes the bottleneck for extremely efficient binary neural networks (BNNs). To address this issue, we open up a new direction by introducing a reshaped point-wise convolution (RPC) to replace the conventional one to build BNNs. Spe...
Uloženo v:
| Vydáno v: | IEEE transactions on circuits and systems for video technology Ročník 32; číslo 9; s. 6414 - 6424 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1051-8215, 1558-2205 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we find that the conventional convolution operation becomes the bottleneck for extremely efficient binary neural networks (BNNs). To address this issue, we open up a new direction by introducing a reshaped point-wise convolution (RPC) to replace the conventional one to build BNNs. Specifically, we conduct a point-wise convolution after rearranging the spatial information into depth, with which at least <inline-formula> <tex-math notation="LaTeX">2.25\times </tex-math></inline-formula> computation reduction can be achieved. Such an efficient RPC allows us to explore more powerful representational capacity of BNNs under a given computation complexity budget. Moreover, we propose to use a balanced activation (BA) to adjust the distribution of the scaled activations after binarization, which enables significant performance improvement of BNNs. After integrating RPC and BA, the proposed network, dubbed as RB-Net, strikes a good trade-off between accuracy and efficiency, achieving superior performance with lower computational cost against the state-of-the-art BNN methods. Specifically, our RB-Net achieves 66.8% Top-1 accuracy with ResNet-18 backbone on ImageNet, exceeding the state-of-the-art Real-to-Binary Net (65.4%) by 1.4% while achieving more than <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> reduction (52M vs. 165M) in computational complexity. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1051-8215 1558-2205 |
| DOI: | 10.1109/TCSVT.2022.3166803 |