Media Forensics and DeepFakes: An Overview
With the rapid progress in recent years, techniques that generate and manipulate multimedia content can now provide a very advanced level of realism. The boundary between real and synthetic media has become very thin. On the one hand, this opens the door to a series of exciting applications in diffe...
Uloženo v:
| Vydáno v: | IEEE journal of selected topics in signal processing Ročník 14; číslo 5; s. 910 - 932 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1932-4553, 1941-0484 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | With the rapid progress in recent years, techniques that generate and manipulate multimedia content can now provide a very advanced level of realism. The boundary between real and synthetic media has become very thin. On the one hand, this opens the door to a series of exciting applications in different fields such as creative arts, advertising, film production, and video games. On the other hand, it poses enormous security threats. Software packages freely available on the web allow any individual, without special skills, to create very realistic fake images and videos. These can be used to manipulate public opinion during elections, commit fraud, discredit or blackmail people. Therefore, there is an urgent need for automated tools capable of detecting false multimedia content and avoiding the spread of dangerous false information. This review paper aims to present an analysis of the methods for visual media integrity verification, that is, the detection of manipulated images and videos. Special emphasis will be placed on the emerging phenomenon of deepfakes, fake media created through deep learning tools, and on modern data-driven forensic methods to fight them. The analysis will help highlight the limits of current forensic tools, the most relevant issues, the upcoming challenges, and suggest future directions for research. |
|---|---|
| AbstractList | With the rapid progress in recent years, techniques that generate and manipulate multimedia content can now provide a very advanced level of realism. The boundary between real and synthetic media has become very thin. On the one hand, this opens the door to a series of exciting applications in different fields such as creative arts, advertising, film production, and video games. On the other hand, it poses enormous security threats. Software packages freely available on the web allow any individual, without special skills, to create very realistic fake images and videos. These can be used to manipulate public opinion during elections, commit fraud, discredit or blackmail people. Therefore, there is an urgent need for automated tools capable of detecting false multimedia content and avoiding the spread of dangerous false information. This review paper aims to present an analysis of the methods for visual media integrity verification, that is, the detection of manipulated images and videos. Special emphasis will be placed on the emerging phenomenon of deepfakes, fake media created through deep learning tools, and on modern data-driven forensic methods to fight them. The analysis will help highlight the limits of current forensic tools, the most relevant issues, the upcoming challenges, and suggest future directions for research. |
| Author | Verdoliva, Luisa |
| Author_xml | – sequence: 1 givenname: Luisa orcidid: 0000-0001-7286-7963 surname: Verdoliva fullname: Verdoliva, Luisa email: verdoliv@unina.it organization: Department of Industrial Engineering, University Federico II of Naples, Naples, Italy |
| BookMark | eNp9kE1PAjEQhhuDiYD-Ab1s4s1ksdOPpfVGUPwIBhPw3JQymxSxi-2C8d-7CPHgwckkM4f3mUmeDmmFKiAh50B7AFRfP01n05ceo4z2OKUMKByRNmgBORVKtHY7Z7mQkp-QTkpLSmW_ANEmV8-48DYbVRFD8i5lNiyyW8T1yL5huskGIZtsMW49fp6S49KuEp4dZpe8ju5mw4d8PLl_HA7GuWNa1vmCoXCAoAopkbtSCm6ZLWiBpVAO5miZYtQyIQo9V6WVGpTkQjcladkgXXK5v7uO1ccGU22W1SaG5qVhgqtCNa2blNqnXKxSilga52tb-yrU0fqVAWp2ZsyPGbMzYw5mGpT9QdfRv9v49T90sYc8Iv4CGkCqvuDfVGBuXQ |
| CODEN | IJSTGY |
| CitedBy_id | crossref_primary_10_1007_s11760_023_02990_5 crossref_primary_10_1109_TDSC_2025_3569971 crossref_primary_10_1073_pnas_2110013119 crossref_primary_10_1007_s11042_021_11126_1 crossref_primary_10_1016_j_cose_2020_102092 crossref_primary_10_1007_s11042_024_18324_7 crossref_primary_10_1109_TIP_2021_3132828 crossref_primary_10_1109_LSP_2020_3026954 crossref_primary_10_1007_s11042_024_20501_7 crossref_primary_10_1109_TPAMI_2024_3350004 crossref_primary_10_1016_j_fsidi_2023_301623 crossref_primary_10_1109_TDSC_2025_3528062 crossref_primary_10_1109_TMM_2023_3253389 crossref_primary_10_1186_s13635_021_00117_2 crossref_primary_10_1007_s11042_022_13312_1 crossref_primary_10_1016_j_neucom_2024_129116 crossref_primary_10_1109_TIFS_2022_3204210 crossref_primary_10_1007_s11042_023_15910_z crossref_primary_10_1007_s11042_024_20284_x crossref_primary_10_1145_3703626 crossref_primary_10_1007_s00371_025_04019_z crossref_primary_10_1016_j_forsciint_2023_111747 crossref_primary_10_1016_j_jvcir_2024_104125 crossref_primary_10_3390_electronics11030403 crossref_primary_10_1016_j_forsciint_2022_111442 crossref_primary_10_1007_s00530_024_01288_x crossref_primary_10_1016_j_heliyon_2023_e15090 crossref_primary_10_1093_comjnl_bxae007 crossref_primary_10_1145_3633203 crossref_primary_10_1007_s11042_022_13001_z crossref_primary_10_1016_j_neucom_2024_129129 crossref_primary_10_3390_electronics12112353 crossref_primary_10_1109_ACCESS_2023_3344653 crossref_primary_10_1051_itmconf_20224403024 crossref_primary_10_1016_j_neucom_2022_09_060 crossref_primary_10_1145_3665497 crossref_primary_10_3389_fcomm_2021_632317 crossref_primary_10_1109_TPAMI_2024_3432551 crossref_primary_10_1007_s11042_024_19519_8 crossref_primary_10_1109_TIFS_2023_3234861 crossref_primary_10_1109_TIFS_2022_3152362 crossref_primary_10_1186_s13635_021_00120_7 crossref_primary_10_1080_23311916_2024_2320971 crossref_primary_10_32604_cmc_2023_034963 crossref_primary_10_3390_jimaging7080128 crossref_primary_10_1038_s41598_025_03889_6 crossref_primary_10_3390_app13031887 crossref_primary_10_1145_3696667 crossref_primary_10_1007_s11042_024_20548_6 crossref_primary_10_1016_j_dsp_2021_103376 crossref_primary_10_48084_etasr_10458 crossref_primary_10_1016_j_patrec_2021_03_005 crossref_primary_10_1007_s11042_021_11539_y crossref_primary_10_1007_s43681_024_00517_3 crossref_primary_10_1016_j_neucom_2023_126263 crossref_primary_10_1007_s11760_025_04669_5 crossref_primary_10_3390_s23010062 crossref_primary_10_1016_j_ins_2023_03_079 crossref_primary_10_1007_s11760_025_04169_6 crossref_primary_10_1016_j_compedu_2021_104426 crossref_primary_10_60097_ACIG_200200 crossref_primary_10_1016_j_engappai_2022_104673 crossref_primary_10_3390_jimaging7080134 crossref_primary_10_1016_j_fsidi_2025_301991 crossref_primary_10_1109_TIFS_2022_3185769 crossref_primary_10_3390_jimaging7080135 crossref_primary_10_1371_journal_pone_0278989 crossref_primary_10_1002_ett_70225 crossref_primary_10_1080_00098655_2025_2488777 crossref_primary_10_1093_cybsec_tyaf008 crossref_primary_10_1016_j_neucom_2024_128607 crossref_primary_10_1177_1071181322661302 crossref_primary_10_1016_j_chbr_2025_100668 crossref_primary_10_3390_info15090525 crossref_primary_10_3390_jimaging9060122 crossref_primary_10_1109_TIFS_2025_3574983 crossref_primary_10_3390_jimaging8100263 crossref_primary_10_1016_j_neucom_2025_131235 crossref_primary_10_1109_TCSVT_2021_3074259 crossref_primary_10_1109_ACCESS_2020_3037735 crossref_primary_10_3390_electronics12143192 crossref_primary_10_1016_j_csl_2025_101840 crossref_primary_10_1109_ACCESS_2024_3396888 crossref_primary_10_1016_j_procs_2023_01_191 crossref_primary_10_1109_TIFS_2022_3202115 crossref_primary_10_1109_ACCESS_2021_3080576 crossref_primary_10_1002_aisy_202300749 crossref_primary_10_1109_LSP_2024_3433596 crossref_primary_10_1016_j_patcog_2021_108413 crossref_primary_10_7717_peerj_cs_1991 crossref_primary_10_1109_JPROC_2025_3576367 crossref_primary_10_1109_TIFS_2023_3306181 crossref_primary_10_1108_JFC_04_2022_0090 crossref_primary_10_1145_3614424 crossref_primary_10_36394_jls_v22_i1_12 crossref_primary_10_1016_j_eswa_2024_124975 crossref_primary_10_1145_3571076 crossref_primary_10_1109_JSTSP_2020_3007250 crossref_primary_10_1007_s10462_024_10810_6 crossref_primary_10_1109_ACCESS_2022_3154404 crossref_primary_10_1111_cgf_14949 crossref_primary_10_1109_TIFS_2022_3179945 crossref_primary_10_1117_1_JEI_32_5_053033 crossref_primary_10_1007_s00371_024_03605_x crossref_primary_10_3390_electronics11162621 crossref_primary_10_1007_s11042_023_15942_5 crossref_primary_10_3390_drones7010053 crossref_primary_10_3390_electronics13010095 crossref_primary_10_1109_MSP_2023_3275319 crossref_primary_10_1007_s11042_024_19220_w crossref_primary_10_1007_s11760_025_03964_5 crossref_primary_10_1177_14738716241238476 crossref_primary_10_1186_s13635_024_00181_4 crossref_primary_10_1016_j_copsyc_2023_101778 crossref_primary_10_1007_s13042_023_02031_0 crossref_primary_10_1016_j_cviu_2025_104494 crossref_primary_10_1016_j_jvcir_2022_103635 crossref_primary_10_1109_ACCESS_2024_3381611 crossref_primary_10_3390_info16040270 crossref_primary_10_1016_j_cviu_2022_103525 crossref_primary_10_1109_MSP_2023_3294720 crossref_primary_10_1016_j_engappai_2021_104456 crossref_primary_10_1109_TIFS_2022_3189527 crossref_primary_10_3390_app14219754 crossref_primary_10_1007_s11042_022_13797_w crossref_primary_10_1016_j_jisa_2024_103935 crossref_primary_10_3390_s25051435 crossref_primary_10_1007_s00502_021_00929_7 crossref_primary_10_1016_j_engappai_2024_109451 crossref_primary_10_1177_21695067231192904 crossref_primary_10_1007_s11042_023_14870_8 crossref_primary_10_1109_TIFS_2022_3169921 crossref_primary_10_1109_ACCESS_2024_3517170 crossref_primary_10_1109_TNNLS_2022_3233063 crossref_primary_10_1109_TCDS_2023_3274450 crossref_primary_10_1016_j_eswa_2023_122832 crossref_primary_10_1145_3634914 crossref_primary_10_1007_s00530_024_01583_7 crossref_primary_10_3390_s22072500 crossref_primary_10_1007_s11229_023_04093_7 crossref_primary_10_1007_s41870_023_01494_2 crossref_primary_10_32604_jcs_2022_032915 crossref_primary_10_3390_fi14050125 crossref_primary_10_1007_s11760_024_03376_x crossref_primary_10_1080_00963402_2024_2388467 crossref_primary_10_1007_s11042_021_10552_5 crossref_primary_10_1007_s12559_025_10473_7 crossref_primary_10_1016_j_cviu_2024_104143 crossref_primary_10_3390_jsan14010017 crossref_primary_10_1109_ACCESS_2023_3276480 crossref_primary_10_3390_app122412969 crossref_primary_10_1109_ACCESS_2020_3023037 crossref_primary_10_1007_s11042_023_17028_8 crossref_primary_10_1109_TCSVT_2023_3251444 crossref_primary_10_1109_TAI_2023_3299894 crossref_primary_10_1002_int_22822 crossref_primary_10_1007_s10489_022_03766_z crossref_primary_10_1109_TIFS_2022_3176188 crossref_primary_10_3389_fsoc_2022_907199 crossref_primary_10_1080_00963402_2021_1912093 crossref_primary_10_1016_j_osnem_2023_100249 crossref_primary_10_1007_s11042_023_15609_1 crossref_primary_10_1016_j_imavis_2023_104868 crossref_primary_10_1111_1468_5973_70031 crossref_primary_10_1007_s11042_024_18706_x crossref_primary_10_1016_j_patrec_2024_03_025 crossref_primary_10_3390_bdcc8090119 crossref_primary_10_3390_jimaging7040069 crossref_primary_10_1002_widm_1520 crossref_primary_10_3390_electronics14132680 crossref_primary_10_1049_ipr2_12578 crossref_primary_10_1007_s11760_024_03775_0 crossref_primary_10_1016_j_jvcir_2023_104017 crossref_primary_10_3389_fdata_2024_1400024 crossref_primary_10_1007_s11263_024_02054_2 crossref_primary_10_32604_cmc_2023_032826 crossref_primary_10_1109_TMM_2022_3182509 crossref_primary_10_3390_s24165103 crossref_primary_10_3233_JIFS_210625 crossref_primary_10_1016_j_jvcir_2021_103119 crossref_primary_10_1007_s11263_022_01606_8 crossref_primary_10_1016_j_patrec_2024_03_008 crossref_primary_10_1109_ACCESS_2022_3151186 crossref_primary_10_37251_jske_v6i3_1798 crossref_primary_10_3390_s22239121 crossref_primary_10_3390_jimaging6030009 crossref_primary_10_1109_TPAMI_2024_3386985 crossref_primary_10_4108_eetpht_10_5912 crossref_primary_10_18466_cbayarfbe_1530209 crossref_primary_10_1007_s11042_022_14307_8 crossref_primary_10_1109_MITP_2022_3172653 crossref_primary_10_1109_TIFS_2025_3592557 crossref_primary_10_1049_bme2_12032 crossref_primary_10_1145_3575656 crossref_primary_10_1007_s11042_024_19308_3 crossref_primary_10_3390_jimaging7070108 crossref_primary_10_1109_LSP_2023_3245947 crossref_primary_10_1007_s11042_024_18111_4 crossref_primary_10_1016_j_inffus_2023_102037 crossref_primary_10_1109_JPROC_2023_3238024 crossref_primary_10_1108_JCOM_09_2022_0113 crossref_primary_10_1080_10286608_2025_2539766 crossref_primary_10_51583_IJLTEMAS_2025_140400116 crossref_primary_10_1109_MMUL_2022_3169769 crossref_primary_10_1007_s11760_024_03440_6 crossref_primary_10_1016_j_neucom_2022_09_135 crossref_primary_10_1109_TPAMI_2022_3233586 crossref_primary_10_1007_s11042_022_13100_x crossref_primary_10_1109_TPAMI_2022_3204971 crossref_primary_10_1109_TPAMI_2023_3313648 crossref_primary_10_1007_s12652_024_04829_4 crossref_primary_10_1016_j_image_2023_117010 crossref_primary_10_1109_LSP_2021_3130525 crossref_primary_10_1186_s13640_024_00635_2 crossref_primary_10_1093_pnasnexus_pgaf194 crossref_primary_10_1049_2024_6523854 crossref_primary_10_3390_computers14010001 crossref_primary_10_1007_s13278_024_01280_3 crossref_primary_10_1016_j_fsidi_2024_301795 crossref_primary_10_1080_17512786_2021_1965905 crossref_primary_10_1016_j_patrec_2024_02_019 crossref_primary_10_1038_s41598_024_73913_8 crossref_primary_10_1109_JIOT_2024_3406954 crossref_primary_10_1109_TPAMI_2022_3180556 crossref_primary_10_1007_s11263_022_01617_5 crossref_primary_10_1016_j_inffus_2020_06_014 crossref_primary_10_5565_rev_enrahonar_1570 crossref_primary_10_1016_j_procs_2024_09_382 crossref_primary_10_1016_j_eswa_2025_126492 crossref_primary_10_1109_ACCESS_2024_3410974 crossref_primary_10_3390_computers12100216 crossref_primary_10_1109_ACCESS_2024_3391809 crossref_primary_10_1109_ACCESS_2022_3142508 crossref_primary_10_1109_TPAMI_2025_3541028 crossref_primary_10_1038_s41598_022_21535_3 crossref_primary_10_1177_21676968241234091 crossref_primary_10_1093_isr_viae013 crossref_primary_10_1007_s40843_023_2710_0 crossref_primary_10_1109_TIFS_2023_3346312 crossref_primary_10_1007_s12559_022_10008_4 crossref_primary_10_1080_21670811_2022_2026797 crossref_primary_10_1109_MSP_2021_3120982 crossref_primary_10_1007_s00500_023_08605_y crossref_primary_10_1155_2022_9655452 crossref_primary_10_3390_electronics12163407 crossref_primary_10_1016_j_imavis_2025_105418 crossref_primary_10_3390_blockchains3010005 crossref_primary_10_3390_jimaging11030073 crossref_primary_10_1016_j_techfore_2023_122644 crossref_primary_10_1109_ACCESS_2025_3545152 crossref_primary_10_3390_jimaging10010004 crossref_primary_10_1016_j_technovation_2023_102784 crossref_primary_10_1109_JSTSP_2025_3554136 crossref_primary_10_1109_TIFS_2023_3235579 crossref_primary_10_3390_jimaging7100193 crossref_primary_10_1016_j_eswa_2025_128571 crossref_primary_10_1016_j_datak_2023_102182 crossref_primary_10_1016_j_imavis_2023_104771 crossref_primary_10_1109_TMM_2025_3535369 |
| Cites_doi | 10.1109/ICIP.2009.5414611 10.1016/j.sigpro.2009.03.025 10.1109/WIFS.2015.7368565 10.1109/WIFS.2009.5386461 10.1109/TIFS.2018.2799421 10.1109/MSEC.2019.2934193 10.1016/j.jvcir.2018.05.011 10.23919/BIOSIG.2018.8553251 10.1214/aoms/1177698950 10.1109/TIFS.2011.2128309 10.2352/ISSN.2470-1173.2017.7.MWSF-330 10.1109/TIFS.2007.916285 10.7551/mitpress/10451.001.0001 10.1007/978-3-319-68548-9_52 10.1145/2909827.2930786 10.1109/TCSVT.2017.2676162 10.1186/s13635-016-0047-y 10.1109/ICCV.2019.01013 10.1109/ICASSP.2019.8683772 10.1109/ICIP.2019.8803661 10.1109/ICASSP.2007.366211 10.1145/1161366.1161375 10.1109/ICCVW.2019.00152 10.1016/j.patcog.2018.07.023 10.1109/CVPR.2016.90 10.1145/1459359.1459406 10.1117/1.2401138 10.1109/CVPR.2017.243 10.1109/ACCESS.2019.2922145 10.1109/TIFS.2011.2106121 10.1109/CVPR.2019.00882 10.1109/CVPR42600.2020.00808 10.1109/CVPR.2019.00453 10.1109/ICASSP.2014.6854801 10.1109/ICMEW.2015.7169839 10.1109/WIFS47025.2019.9035099 10.1109/ChinaSIP.2013.6625374 10.1109/TIFS.2013.2272377 10.1109/WACVW.2019.00020 10.1016/j.patcog.2009.03.019 10.1109/TIFS.2019.2902826 10.1145/1161366.1161376 10.1109/TIFS.2012.2187516 10.1109/ICCV.2019.00839 10.1007/978-3-030-31456-9_15 10.1109/TIFS.2007.916010 10.23919/EUSIPCO.2019.8903181 10.1109/ICCV.2019.00603 10.1109/TIFS.2019.2951313 10.1145/1978802.1978805 10.1109/ICIP.2014.7026074 10.1007/978-3-030-01228-1_39 10.1109/TIFS.2011.2129512 10.1109/CVPR.2017.632 10.1109/TIFS.2017.2725201 10.1109/WACVW.2019.00018 10.1109/ICPR.2018.8545428 10.1109/ISCAS.2010.5537505 10.1109/TIFS.2013.2248727 10.1109/WACV.2018.00170 10.1145/3306346.3323028 10.1109/TIFS.2010.2099220 10.1109/TIFS.2019.2916364 10.1016/j.sigpro.2020.107616 10.1109/JSTSP.2020.3001516 10.1109/TCSVT.2018.2804768 10.1109/AVSS.2018.8639163 10.1145/2487228.2487236 10.1145/1531326.1531330 10.1109/CVPR.2016.308 10.1109/TIFS.2018.2859760 10.1109/CVPRW.2019.00010 10.1109/TIFS.2010.2077628 10.1109/TIFS.2010.2074194 10.1109/TIFS.2012.2218597 10.1109/TIFS.2008.2008214 10.1109/CVPR.2019.00244 10.1186/s13635-017-0067-2 10.1117/12.704723 10.1109/MIPR.2019.00103 10.2352/ISSN.2470-1173.2018.07.MWSF-214 10.1016/j.jvcir.2018.01.010 10.1007/s13735-017-0143-x 10.1145/3335203.3335724 10.1109/ACCESS.2019.2905689 10.1109/TIFS.2012.2190402 10.1109/TIFS.2008.2012215 10.1145/3130800.3130818 10.1109/ACCESS.2013.2260814 10.1109/TIFS.2012.2195492 10.1109/ICIP.2017.8296533 10.1145/3082031.3083247 10.1109/TIFS.2019.2945198 10.1109/WIFS.2018.8630761 10.1109/WIFS.2011.6123127 10.1109/WIFS.2016.7823911 10.1016/j.dsp.2017.08.009 10.1109/ICCV.2019.00955 10.1109/FG.2018.00024 10.1145/3306346.3323035 10.1117/12.640109 10.1109/TIFS.2015.2394231 10.1109/CVPRW.2017.230 10.1002/9781118705773.ch15 10.1007/978-3-642-04438-0_7 10.1016/j.jvcir.2017.09.003 10.1016/j.jvcir.2015.01.016 10.1145/3219819.3219910 10.1109/ICIP.2014.7026073 10.1109/WIFS.2016.7823898 10.1109/WIFS47025.2019.9035107 10.1109/TIFS.2015.2427778 10.1109/ICIP.2016.7532339 10.1109/CVPR42600.2020.00791 10.1109/ICCV.2019.00765 10.1109/MIPR.2018.00084 10.1109/TCSVT.2016.2599849 10.1109/LSP.2017.2782363 10.1109/ICASSP.2019.8682602 10.1109/CVPRW.2017.233 10.1109/ICASSP.2018.8462585 10.1109/ICASSP.2019.8683164 10.1109/CVPRW50498.2020.00337 10.1109/CVPR.2019.00977 10.1016/j.image.2018.04.007 10.1109/ICCV.2019.00009 10.1109/TIFS.2019.2926777 10.1109/ICCV.2019.01017 10.1109/TIFS.2017.2745687 10.1007/s11042-016-3795-2 10.1007/978-3-642-41184-7_27 10.1109/TSP.2004.839896 10.1145/1291233.1291252 10.1109/ICCV.2019.00728 10.1609/aaai.v34i07.7007 10.1017/ATSIP.2012.2 10.1109/MMSP.2013.6659337 10.23919/EUSIPCO.2018.8553560 10.2352/ISSN.2470-1173.2019.5.MWSF-532 10.1007/s11263-010-0403-1 10.1109/WIFS.2016.7823921 10.1109/WIFS.2017.8267647 10.1109/WACV.2018.00211 10.1109/ICCVW.2019.00213 10.1109/TSP.2005.855406 10.1007/11744078_33 10.1109/WIFS.2018.8630787 10.1109/TIP.2016.2518870 10.3390/s18113801 10.1109/TIP.2019.2895466 10.2352/ISSN.2470-1173.2018.07.MWSF-213 10.1145/2713168.2713194 10.1016/j.imavis.2009.02.001 10.1109/ICIP.2013.6738919 10.1108/OIR-03-2018-0101 10.1109/ICIP.2005.1530330 10.1109/ICIP.2019.8803740 10.1109/WACVW50321.2020.9096940 10.1109/TIFS.2007.903848 10.1109/ICME.2006.262447 10.1109/CVPR.2018.00116 10.1109/ICMEW.2015.7169770 10.1145/2929464.2929475 10.1145/1774088.1774427 10.1109/CVPRW.2003.10093 10.1109/CVPR.2018.00916 10.1109/ICIP.2014.7025049 10.23919/EUSIPCO.2018.8553305 10.1109/CVPRW.2017.232 10.1109/MSP.2008.931079 10.1109/ICASSP.2014.6854802 10.1145/1411328.1411333 10.1145/3335203.3335722 10.1145/3123266.3123411 10.1145/3319535.3363269 10.1007/s11263-013-0688-y 10.1109/CVPR.2017.195 10.1145/3072959.3073640 10.1007/978-3-540-30114-1_10 10.1109/ICIP.2014.7026072 10.1109/ICCV.2017.244 10.1109/CVPR42600.2020.00296 10.23919/EUSIPCO.2018.8553581 10.1109/TIFS.2013.2265677 10.1109/CVPRW.2017.229 10.1109/CVPRW.2008.4562984 10.1109/TIFS.2012.2202227 10.1016/j.patcog.2012.05.014 10.2352/ISSN.2470-1173.2017.7.MWSF-331 10.1109/WIFS.2014.7084319 10.1109/TIP.2002.807361 10.1109/TIFS.2014.2302078 10.1109/WIFS.2017.8267668 10.1109/TIFS.2019.2957693 10.1109/NBiS.2014.82 10.1109/ICIP.2019.8802966 10.1109/CVPR.2017.434 10.1109/TIFS.2015.2455334 10.1109/TIFS.2009.2033749 10.1109/WIFS.2012.6412641 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD H8D L7M |
| DOI | 10.1109/JSTSP.2020.3002101 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0484 |
| EndPage | 932 |
| ExternalDocumentID | 10_1109_JSTSP_2020_3002101 9115874 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Defense Advanced Research Projects Agency grantid: FA8750-16-2-0204 funderid: 10.13039/100000185 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS AAYXX CITATION 7SP 8FD H8D L7M |
| ID | FETCH-LOGICAL-c295t-d2e4c1e18655e3cf543a2a606ef48c1bea2820a24469b8fa5918534999950f5e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 412 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564205000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-4553 |
| IngestDate | Mon Jun 30 10:24:45 EDT 2025 Tue Nov 18 22:30:42 EST 2025 Sat Nov 29 04:10:33 EST 2025 Wed Aug 27 02:29:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-d2e4c1e18655e3cf543a2a606ef48c1bea2820a24469b8fa5918534999950f5e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7286-7963 |
| PQID | 2438688689 |
| PQPubID | 75721 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2438688689 ieee_primary_9115874 crossref_citationtrail_10_1109_JSTSP_2020_3002101 crossref_primary_10_1109_JSTSP_2020_3002101 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-01 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE journal of selected topics in signal processing |
| PublicationTitleAbbrev | JSTSP |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref207 szegedy (ref250) 0 ref56 ref208 ref59 ref205 ref206 ref53 ref52 wang (ref185) 0 ref55 ref54 fu (ref60) 2012; 7 tralic (ref219) 0 chen (ref109) 0 farid (ref88) 2006 suwajanakorn (ref46) 2017; 36 huang (ref42) 2018 ref210 ref50 ref218 ref45 ref48 ref216 güera (ref18) 0 ref217 ref214 ref41 ref215 ref213 fan (ref76) 2003; 12 szegedy (ref255) 0 ref49 ref8 ref7 li (ref212) 2019 ref9 ref4 ref3 ref5 ref100 ref101 ref222 ref40 ref220 qian (ref145) 0; 9409 y cozzolino (ref265) 2019 ref34 ho (ref67) 0 ref30 ref32 li (ref192) 0 ref39 cox (ref21) 2008 ref38 ref24 nguyen (ref181) 0 ref23 ref26 ref20 ref22 hsu (ref72) 0 ciftci (ref189) 2019 korshunov (ref229) 2018 ref29 cao (ref62) 2009; 4 ref200 ref128 ref249 ref129 ref97 ref126 ref247 ref96 ref127 ref248 ref99 ref124 ref125 ref246 böhme (ref245) 2012 long (ref134) 0 li (ref25) 2019 ref93 ref133 ref254 ref92 ref95 ref131 ref94 ref132 barni (ref141) 2019 ref253 ref130 ref251 ref91 ref90 karras (ref176) 2019 ref139 ref86 ref137 ref258 ref85 ref138 ref259 ref135 ref256 ref87 ref136 ref257 agarwal (ref195) 0 ref82 ref144 ref266 ref84 ref142 ref263 ref83 ref143 ref261 ref262 ref80 (ref225) 0 ref79 ref108 ref78 ref227 ref106 ref75 ref104 ref74 ref226 ref105 ref77 ref223 ref103 piva (ref6) 2012 (ref232) 0 lin (ref118) 0 ref71 ref111 ref70 ref112 ref73 ref110 ref68 ref119 ref238 ref117 ref69 ref64 ref115 neves (ref264) 2019 ref63 ref237 ref116 cozzolino (ref165) 0 ref66 ref234 ref65 ref235 ref114 albright (ref175) 0 ref243 ref122 ref244 ref123 ref241 ref120 ref61 ref242 ref121 brock (ref31) 0 marra (ref155) 2019 ref240 du (ref182) 2019 wang (ref44) 0 ref168 ref169 frank (ref173) 2020 ref170 ref177 ref178 sabir (ref209) 0 ref174 ref171 ref172 wu (ref107) 0 neekhara (ref260) 2020 ref179 dufour (ref230) 2019 korshunov (ref273) 0 li (ref233) 0 lukáš (ref81) 0 ref188 ref186 chung (ref47) 0 ref187 ref184 ref183 cozzolino (ref180) 2018 ref269 ref148 ref149 ref267 ref146 ref268 ref147 heller (ref224) 2018 dolhansky (ref231) 2019 ryu (ref102) 2013; 8 shetty (ref28) 0 moreira (ref11) 2018; 14 ref156 ref274 ref153 ref154 ref151 ref152 ref270 ref271 ref150 zhu (ref167) 2019 wu (ref36) 0 ref159 abu-el-haija (ref236) 2016 ref157 ref158 huh (ref162) 0 li (ref202) 2019 marra (ref252) 0 kumar (ref204) 2020 karras (ref43) 0 ref166 agarwal (ref89) 0 kim (ref51) 2018; 37 ref164 ref163 ref160 ref161 ref13 ref12 thies (ref27) 2019; 38 ref15 ref14 ref10 chakraborty (ref113) 0 ref17 ref16 engstrom (ref37) 2019 singh (ref19) 0 dhruv (ref272) 0 rössler (ref201) 2018 (ref228) 0 ng (ref221) 2004 wang (ref33) 0; 32 stehouwer (ref203) 0 ref2 ref1 (ref239) 0 ref191 ref190 ref199 ref197 ref198 wu (ref140) 0 ref196 ref193 ref194 fridrich (ref98) 0 gloe (ref58) 0; 7541 reed (ref35) 0 fernando (ref211) 2019 |
| References_xml | – ident: ref65 doi: 10.1109/ICIP.2009.5414611 – volume: 14 start-page: 6109 year: 2018 ident: ref11 article-title: Image provenance analysis at scale publication-title: IEEE Trans Image Process – ident: ref78 doi: 10.1016/j.sigpro.2009.03.025 – year: 2019 ident: ref265 article-title: SpoC: Spoofing camera fingerprints publication-title: arxiv org/abs/1911 12069 – ident: ref71 doi: 10.1109/WIFS.2015.7368565 – ident: ref119 doi: 10.1109/WIFS.2009.5386461 – ident: ref59 doi: 10.1109/TIFS.2018.2799421 – year: 2019 ident: ref37 article-title: Adversarial robustness as a prior for learned representations publication-title: arXiv 1906 00945v2 – ident: ref23 doi: 10.1109/MSEC.2019.2934193 – ident: ref80 doi: 10.1016/j.jvcir.2018.05.011 – ident: ref179 doi: 10.23919/BIOSIG.2018.8553251 – year: 2020 ident: ref260 article-title: Adversarial deepfakes: Evaluating vulnerability of deepfake detectors to adversarial examples publication-title: arXiv 2002 12749v2 – ident: ref268 doi: 10.1214/aoms/1177698950 – year: 2019 ident: ref264 article-title: Real or fake? Spoofing state-of-the-art face synthesis detection systems publication-title: arXiv 1911 05351v2 – volume: 32 start-page: 1 year: 0 ident: ref33 article-title: Few-shot Video-to-Video Synthesis publication-title: Neural Inf Process Syst – ident: ref16 doi: 10.1109/TIFS.2011.2128309 – ident: ref157 doi: 10.2352/ISSN.2470-1173.2017.7.MWSF-330 – start-page: 38 year: 0 ident: ref195 article-title: Protecting world leaders against deep fakes publication-title: Proc IEEE CVPR Workshop – ident: ref110 doi: 10.1109/TIFS.2007.916285 – ident: ref2 doi: 10.7551/mitpress/10451.001.0001 – ident: ref114 doi: 10.1007/978-3-319-68548-9_52 – ident: ref144 doi: 10.1145/2909827.2930786 – ident: ref74 doi: 10.1109/TCSVT.2017.2676162 – ident: ref129 doi: 10.1186/s13635-016-0047-y – year: 2019 ident: ref141 article-title: Copy move source-target disambiguation through multi-branch CNNs publication-title: arXiv 1912 12640v1 – ident: ref49 doi: 10.1109/ICCV.2019.01013 – ident: ref257 doi: 10.1109/ICASSP.2019.8683772 – ident: ref168 doi: 10.1109/ICIP.2019.8803661 – year: 2019 ident: ref211 article-title: Exploiting human social cognition for the detection of fake and fraudulent faces via memory networks publication-title: arXiv 1911 07844v1 – start-page: 3207 year: 0 ident: ref233 article-title: Celeb-DF: A large-scale challenging dataset for DeepFake forensics publication-title: Proc IEEE Conf Comp Vis Patt Recogn – ident: ref77 doi: 10.1109/ICASSP.2007.366211 – ident: ref91 doi: 10.1145/1161366.1161375 – ident: ref210 doi: 10.1109/ICCVW.2019.00152 – year: 2019 ident: ref167 article-title: Detecting GAN generated errors publication-title: arXiv 1912 00527v1 – ident: ref251 doi: 10.1016/j.patcog.2018.07.023 – ident: ref135 doi: 10.1109/CVPR.2016.90 – start-page: 130 year: 0 ident: ref165 article-title: Extracting camera-based fingerprints for video forensics publication-title: Proc CVPR Workshops – start-page: 1 year: 0 ident: ref252 article-title: Counter-forensics in machine learning based forgery detection publication-title: Proc of the SPIE Media Watermarking Security and Forensics – ident: ref9 doi: 10.1145/1459359.1459406 – ident: ref121 doi: 10.1117/1.2401138 – ident: ref199 doi: 10.1109/CVPR.2017.243 – year: 0 ident: ref89 article-title: Photo forensics from JPEG dimples publication-title: Proc IEEE Int Workshop Inf Forensics and Secur – start-page: 1 year: 0 ident: ref113 article-title: PRNU-based forgery detection with discriminative random fields publication-title: Proc Int Symp Electron Imag Media Watermarking Secur Forensics – ident: ref243 doi: 10.1109/ACCESS.2019.2922145 – start-page: 1 year: 0 ident: ref47 publication-title: Proc Brit Mach Vision Conf – ident: ref82 doi: 10.1109/TIFS.2011.2106121 – year: 2020 ident: ref173 article-title: Leveraging frequency analysis for deep fake image recognition publication-title: arXiv 2003 08685v2 – ident: ref24 doi: 10.1109/CVPR.2019.00882 – year: 2019 ident: ref176 article-title: Analyzing and improving the image quality of StyleGAN publication-title: arXiv 1912 04958 – ident: ref186 doi: 10.1109/CVPR42600.2020.00808 – ident: ref30 doi: 10.1109/CVPR.2019.00453 – ident: ref93 doi: 10.1109/ICASSP.2014.6854801 – ident: ref222 doi: 10.1109/ICMEW.2015.7169839 – ident: ref183 doi: 10.1109/WIFS47025.2019.9035099 – year: 2016 ident: ref236 article-title: YouTube-8M: A largescale video classification benchmark publication-title: arXiv 1609 08675 – year: 0 ident: ref239 article-title: Kaggle Camera Model Identification Challenge – ident: ref215 doi: 10.1109/ChinaSIP.2013.6625374 – volume: 8 start-page: 1355 year: 2013 ident: ref102 article-title: Rotation invariant localization of duplicated image regions based on Zernike moments publication-title: IEEE Trans Inf Forensics and Security doi: 10.1109/TIFS.2013.2272377 – start-page: 8695 year: 0 ident: ref185 article-title: CNN-generated images are surprisingly easy to spot... for now publication-title: IEEE Conf Comput Vision Pattern Recognit – ident: ref166 doi: 10.1109/WACVW.2019.00020 – year: 2020 ident: ref204 article-title: Detecting deepfakes with metric learning publication-title: 2nd International Workshop on Biometrics and Forensics – start-page: 46 year: 0 ident: ref192 article-title: Exposing deepfake videos by detecting face warping artifacts publication-title: Proc IEEE CVPR Workshop – ident: ref79 doi: 10.1016/j.patcog.2009.03.019 – start-page: 1 year: 0 ident: ref162 article-title: Fighting fake news: Image splice detection via learned self-consistency publication-title: Proc Eur Conf Comput Vision – ident: ref8 doi: 10.1109/TIFS.2019.2902826 – ident: ref56 doi: 10.1145/1161366.1161376 – ident: ref84 doi: 10.1109/TIFS.2012.2187516 – ident: ref149 doi: 10.1109/ICCV.2019.00839 – ident: ref184 doi: 10.1007/978-3-030-31456-9_15 – ident: ref55 doi: 10.1109/TIFS.2007.916010 – year: 2019 ident: ref189 article-title: FakeCatcher: Detection of synthetic portrait videos using biological signals publication-title: arXiv 1901 02212v2 – ident: ref226 doi: 10.23919/EUSIPCO.2019.8903181 – ident: ref54 doi: 10.1109/ICCV.2019.00603 – ident: ref94 doi: 10.1109/TIFS.2019.2951313 – ident: ref12 doi: 10.1145/1978802.1978805 – ident: ref248 doi: 10.1109/ICIP.2014.7026074 – ident: ref130 doi: 10.1007/978-3-030-01228-1_39 – ident: ref100 doi: 10.1109/TIFS.2011.2129512 – ident: ref34 doi: 10.1109/CVPR.2017.632 – ident: ref87 doi: 10.1109/TIFS.2017.2725201 – ident: ref223 doi: 10.1109/WACVW.2019.00018 – ident: ref271 doi: 10.1109/ICPR.2018.8545428 – ident: ref83 doi: 10.1109/ISCAS.2010.5537505 – ident: ref266 doi: 10.1109/TIFS.2013.2248727 – ident: ref26 doi: 10.1109/WACV.2018.00170 – ident: ref40 doi: 10.1145/3306346.3323028 – ident: ref247 doi: 10.1109/TIFS.2010.2099220 – ident: ref163 doi: 10.1109/TIFS.2019.2916364 – ident: ref169 doi: 10.1016/j.sigpro.2020.107616 – ident: ref161 doi: 10.1109/JSTSP.2020.3001516 – start-page: 2674 year: 0 ident: ref107 article-title: Exposing video interframe forgery based on velocity field consistency publication-title: Proc IEEE Int Conf Acoust Speech Signal Process – ident: ref106 doi: 10.1109/TCSVT.2018.2804768 – start-page: 5913 year: 0 ident: ref36 article-title: RelGAN: Multi-Domain Image-to-Image Translation via Relative Attributes publication-title: Proc Int Conf Comput Vision – start-page: 1 year: 0 ident: ref134 article-title: A Coarse-to-fine Deep Convolutional Neural Network Framework for Frame Duplication Detection and Localization in Forged Videos publication-title: Proc IEEE CVPR Workshop – ident: ref207 doi: 10.1109/AVSS.2018.8639163 – ident: ref4 doi: 10.1145/2487228.2487236 – ident: ref41 doi: 10.1145/1531326.1531330 – ident: ref198 doi: 10.1109/CVPR.2016.308 – start-page: 1 year: 0 ident: ref81 article-title: Estimation of primary quantization matrix in double compressed JPEG images publication-title: Proc Digital Forensic Res Workshop – ident: ref17 doi: 10.1109/TIFS.2018.2859760 – ident: ref137 doi: 10.1109/CVPRW.2019.00010 – ident: ref120 doi: 10.1109/TIFS.2010.2077628 – ident: ref75 doi: 10.1109/TIFS.2010.2074194 – ident: ref99 doi: 10.1109/TIFS.2012.2218597 – start-page: 170 year: 0 ident: ref72 article-title: Video forgery detection using correlation of noise residue publication-title: Proc IEEE Int Workshop Multimedia Signal Process – ident: ref246 doi: 10.1109/TIFS.2008.2008214 – ident: ref32 doi: 10.1109/CVPR.2019.00244 – ident: ref241 doi: 10.1186/s13635-017-0067-2 – start-page: 1 year: 0 ident: ref31 article-title: Large scale GAN training for high fidelity natural image synthesis publication-title: Proc Int Conf Learn Representations – ident: ref86 doi: 10.1117/12.704723 – ident: ref170 doi: 10.1109/MIPR.2019.00103 – year: 2018 ident: ref42 article-title: An introduction to image synthesis with generative adversarial nets publication-title: arXiv 1803 04469v2 – ident: ref158 doi: 10.2352/ISSN.2470-1173.2018.07.MWSF-214 – ident: ref136 doi: 10.1016/j.jvcir.2018.01.010 – start-page: 1087 year: 0 ident: ref118 article-title: Detecting doctored images using camera response normality and consistency publication-title: Proc IEEE Conf Comput Vision Pattern Recognit – ident: ref274 doi: 10.1007/s13735-017-0143-x – ident: ref193 doi: 10.1145/3335203.3335724 – ident: ref22 doi: 10.1109/ACCESS.2019.2905689 – year: 2019 ident: ref25 article-title: Hiding faces in plain sight: Disrupting AI face synthesis with adversarial perturbations publication-title: arXiv 1906 09288v1 – year: 2018 ident: ref224 article-title: The PS-battles dataset-An image collection for image manipulation detection publication-title: CoRR – ident: ref127 doi: 10.1109/TIFS.2012.2190402 – ident: ref85 doi: 10.1109/TIFS.2008.2012215 – ident: ref53 doi: 10.1145/3130800.3130818 – year: 2018 ident: ref180 article-title: ForensicTransfer: Weakly-supervised domain adaptation for forgery detection publication-title: arXiv 1812 02510 – ident: ref14 doi: 10.1109/ACCESS.2013.2260814 – volume: 7 start-page: 1301 year: 2012 ident: ref60 article-title: Forgery authentication in extreme wide-angle lens using distortion cue and fake saliency map publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2012.2195492 – year: 2018 ident: ref201 article-title: Faceforensics: A large-scale video dataset for forgery detection in human faces publication-title: arXiv 1803 09179 – ident: ref73 doi: 10.1109/ICIP.2017.8296533 – ident: ref146 doi: 10.1145/3082031.3083247 – ident: ref263 doi: 10.1109/TIFS.2019.2945198 – year: 2019 ident: ref212 article-title: Face X-ray for more general face forgery detection publication-title: arXiv 1912 13458v1 – ident: ref196 doi: 10.1109/WIFS.2018.8630761 – ident: ref10 doi: 10.1109/WIFS.2011.6123127 – volume: 7541 start-page: 1 year: 0 ident: ref58 article-title: Efficient estimation and large scale evaluation of lateral chromatic aberration for digital image forensics publication-title: Proc SPIE – year: 2019 ident: ref182 article-title: Towards generalizable forgery detection with locality-aware autoencoder publication-title: arXiv 1909 05999v1 – year: 2019 ident: ref231 article-title: The deepfake detection challenge (DFDC) preview dataset publication-title: arXiv 1910 08854v2 – ident: ref143 doi: 10.1109/WIFS.2016.7823911 – ident: ref15 doi: 10.1016/j.dsp.2017.08.009 – year: 2008 ident: ref21 article-title: Digital Watermarking and Steganography – ident: ref45 doi: 10.1109/ICCV.2019.00955 – ident: ref39 doi: 10.1109/FG.2018.00024 – volume: 38 year: 2019 ident: ref27 article-title: Deferred neural rendering: image synthesis using neural textures publication-title: ACM Trans Graph (TOG) doi: 10.1145/3306346.3323035 – ident: ref108 doi: 10.1117/12.640109 – volume: 37 start-page: 1 year: 2018 ident: ref51 article-title: Deep video portraits publication-title: ACM Trans Graph (TOG) – start-page: 1 year: 0 ident: ref18 article-title: We need no pixels: Video manipulation detection using stream descriptors publication-title: Proc ICML Workshop – ident: ref97 doi: 10.1109/TIFS.2015.2394231 – start-page: 1 year: 0 ident: ref43 article-title: Progressive growing of GANs for improved quality, stability, and variation publication-title: Proc Int Conf Learn Representations – start-page: 1 year: 0 ident: ref98 article-title: Detection of copy-move forgery in digital images publication-title: Proc Digital Forensic Res Workshop – ident: ref254 doi: 10.1109/CVPRW.2017.230 – ident: ref213 doi: 10.1002/9781118705773.ch15 – ident: ref96 doi: 10.1007/978-3-642-04438-0_7 – ident: ref131 doi: 10.1016/j.jvcir.2017.09.003 – ident: ref101 doi: 10.1016/j.jvcir.2015.01.016 – ident: ref258 doi: 10.1145/3219819.3219910 – ident: ref104 doi: 10.1109/ICIP.2014.7026073 – ident: ref217 doi: 10.1109/WIFS.2016.7823898 – start-page: 2915 year: 0 ident: ref272 article-title: MVAE: Multimodal variational autoencoder for fake news detection publication-title: Proc ACM World Wide Web Conf – ident: ref172 doi: 10.1109/WIFS47025.2019.9035107 – ident: ref187 doi: 10.1109/TIFS.2015.2427778 – ident: ref220 doi: 10.1109/ICIP.2016.7532339 – ident: ref174 doi: 10.1109/CVPR42600.2020.00791 – ident: ref171 doi: 10.1109/ICCV.2019.00765 – ident: ref177 doi: 10.1109/MIPR.2018.00084 – ident: ref123 doi: 10.1109/TCSVT.2016.2599849 – ident: ref262 doi: 10.1109/LSP.2017.2782363 – ident: ref205 doi: 10.1109/ICASSP.2019.8682602 – ident: ref132 doi: 10.1109/CVPRW.2017.233 – start-page: 80 year: 0 ident: ref209 article-title: Recurrent convolutional strategies for face manipulation detection in videos publication-title: Proc CVPR Workshops – year: 2004 ident: ref221 article-title: A data set of authentic and spliced image blocks – year: 2006 ident: ref88 article-title: Digital image ballistics from JPEG quantization – ident: ref160 doi: 10.1109/ICASSP.2018.8462585 – ident: ref194 doi: 10.1109/ICASSP.2019.8683164 – ident: ref261 doi: 10.1109/CVPRW50498.2020.00337 – year: 0 ident: ref228 article-title: GAN datasets – ident: ref150 doi: 10.1109/CVPR.2019.00977 – ident: ref259 doi: 10.1016/j.image.2018.04.007 – ident: ref197 doi: 10.1109/ICCV.2019.00009 – ident: ref20 doi: 10.1109/TIFS.2019.2926777 – year: 2019 ident: ref155 article-title: A full-image full-resolution end-to-end-trainable CNN framework for image forgery detection publication-title: arXiv 1909 06751 – ident: ref142 doi: 10.1109/ICCV.2019.01017 – ident: ref117 doi: 10.1109/TIFS.2017.2745687 – start-page: 1 year: 0 ident: ref181 article-title: Multi-task learning for detecting and segmenting manipulated facial images and videos publication-title: Proc IEEE Int Conf Biometrics Theory Appl Syst – ident: ref218 doi: 10.1007/s11042-016-3795-2 – ident: ref269 doi: 10.1007/978-3-642-41184-7_27 – ident: ref124 doi: 10.1109/TSP.2004.839896 – ident: ref244 doi: 10.1145/1291233.1291252 – ident: ref52 doi: 10.1109/ICCV.2019.00728 – ident: ref152 doi: 10.1609/aaai.v34i07.7007 – ident: ref13 doi: 10.1017/ATSIP.2012.2 – ident: ref105 doi: 10.1109/MMSP.2013.6659337 – ident: ref256 doi: 10.23919/EUSIPCO.2018.8553560 – ident: ref178 doi: 10.2352/ISSN.2470-1173.2019.5.MWSF-532 – year: 0 ident: ref225 article-title: MFC2019 – ident: ref57 doi: 10.1007/s11263-010-0403-1 – start-page: 1475 year: 0 ident: ref67 article-title: Inter-channel demosaicing traces for digital image forensics publication-title: Proc IEEE Int Conf Multimedia Expo – ident: ref156 doi: 10.1109/WIFS.2016.7823921 – ident: ref153 doi: 10.1109/WIFS.2017.8267647 – ident: ref138 doi: 10.1109/WACV.2018.00211 – start-page: 1060 year: 0 ident: ref35 article-title: Generative adversarial text-to-image synthesis publication-title: Proc Int Conf Mach Learn – ident: ref190 doi: 10.1109/ICCVW.2019.00213 – ident: ref63 doi: 10.1109/TSP.2005.855406 – year: 2018 ident: ref229 article-title: DeepFakes: A new threat to face recognition? Assessment and detection publication-title: arXiv 1812 08685v1 – ident: ref116 doi: 10.1007/11744078_33 – ident: ref188 doi: 10.1109/WIFS.2018.8630787 – start-page: 96 year: 0 ident: ref175 article-title: Source generator attribution via inversion publication-title: Proc CVPR Workshops – ident: ref270 doi: 10.1109/TIP.2016.2518870 – ident: ref240 doi: 10.3390/s18113801 – ident: ref151 doi: 10.1109/TIP.2019.2895466 – ident: ref154 doi: 10.2352/ISSN.2470-1173.2018.07.MWSF-213 – ident: ref238 doi: 10.1145/2713168.2713194 – ident: ref70 doi: 10.1016/j.imavis.2009.02.001 – ident: ref122 doi: 10.1109/ICIP.2013.6738919 – ident: ref235 doi: 10.1108/OIR-03-2018-0101 – start-page: 1 year: 2012 ident: ref6 article-title: An overview on image forensics publication-title: ISRN Signal Process – ident: ref61 doi: 10.1109/ICIP.2005.1530330 – ident: ref206 doi: 10.1109/ICIP.2019.8803740 – start-page: 1 year: 0 ident: ref28 article-title: Adversarial scene editing: Automatic object removal from weak supervision publication-title: Proc Conf Neural Inf Process Syst – start-page: 1 year: 0 ident: ref255 article-title: Intriguing properties of neural networks publication-title: Proc Int Conf Learn Represent – ident: ref227 doi: 10.1109/WACVW50321.2020.9096940 – ident: ref3 doi: 10.1109/TIFS.2007.903848 – ident: ref214 doi: 10.1109/ICME.2006.262447 – ident: ref148 doi: 10.1109/CVPR.2018.00116 – ident: ref267 doi: 10.1109/ICMEW.2015.7169770 – ident: ref50 doi: 10.1145/2929464.2929475 – ident: ref237 doi: 10.1145/1774088.1774427 – ident: ref126 doi: 10.1109/CVPRW.2003.10093 – ident: ref48 doi: 10.1109/CVPR.2018.00916 – ident: ref191 doi: 10.1109/ICIP.2014.7025049 – ident: ref249 doi: 10.23919/EUSIPCO.2018.8553305 – ident: ref159 doi: 10.1109/CVPRW.2017.232 – ident: ref1 doi: 10.1109/MSP.2008.931079 – ident: ref112 doi: 10.1109/ICASSP.2014.6854802 – ident: ref95 doi: 10.1145/1411328.1411333 – ident: ref90 doi: 10.1145/3335203.3335722 – ident: ref7 doi: 10.1145/3123266.3123411 – start-page: 1152 year: 0 ident: ref44 article-title: Video-to-video synthesis publication-title: Proc Conf Neural Inf Process Syst – ident: ref208 doi: 10.1145/3319535.3363269 – start-page: 49 year: 0 ident: ref219 article-title: CoMoFoD - New database for copy-move forgery detection publication-title: Proc 55th Int'l Symp ELMAR – year: 2019 ident: ref230 article-title: Deepfakes detection dataset by google and JigSaw – start-page: 5781 year: 0 ident: ref203 article-title: On the detection of digital face manipulation publication-title: IEEE Conf Comput Vision Pattern Recognit – ident: ref69 doi: 10.1007/s11263-013-0688-y – ident: ref200 doi: 10.1109/CVPR.2017.195 – volume: 36 year: 2017 ident: ref46 article-title: Synthesizing Obama: Learning lip sync from audio publication-title: ACM Trans Graph doi: 10.1145/3072959.3073640 – year: 2019 ident: ref202 article-title: Zooming into Face Forensics: A Pixel-level Analysis publication-title: arXiv 1912 05790v1 – ident: ref68 doi: 10.1007/978-3-540-30114-1_10 – ident: ref128 doi: 10.1109/ICIP.2014.7026072 – ident: ref38 doi: 10.1109/ICCV.2017.244 – volume: 9409 y start-page: 1 year: 0 ident: ref145 article-title: Deep learning for steganalysis via convolutional neural networks publication-title: Proc SPIE – ident: ref234 doi: 10.1109/CVPR42600.2020.00296 – ident: ref164 doi: 10.23919/EUSIPCO.2018.8553581 – ident: ref5 doi: 10.1109/TIFS.2013.2265677 – ident: ref147 doi: 10.1109/CVPRW.2017.229 – ident: ref64 doi: 10.1109/CVPRW.2008.4562984 – ident: ref66 doi: 10.1109/TIFS.2012.2202227 – ident: ref125 doi: 10.1016/j.patcog.2012.05.014 – ident: ref242 doi: 10.2352/ISSN.2470-1173.2017.7.MWSF-331 – ident: ref115 doi: 10.1109/WIFS.2014.7084319 – volume: 12 start-page: 230 year: 2003 ident: ref76 article-title: Identification of bitmap compression history: JPEG detection and quantizer estimation publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2002.807361 – start-page: 170 year: 0 ident: ref140 article-title: BusterNet: Detecting copy-move image forgery with source/target localization publication-title: Proc Eur Conf Comput Vision – ident: ref111 doi: 10.1109/TIFS.2014.2302078 – ident: ref253 doi: 10.1109/WIFS.2017.8267668 – start-page: 11 year: 0 ident: ref19 article-title: Robust homomorphic image hashing publication-title: Proc IEEE CVPR Workshop – ident: ref139 doi: 10.1109/TIFS.2019.2957693 – start-page: 342 year: 0 ident: ref109 article-title: Imaging sensor noise as digital x-ray for revealing forgeries publication-title: Proc Int Workshop Inf Hiding – ident: ref216 doi: 10.1109/NBiS.2014.82 – start-page: 1 year: 0 ident: ref250 article-title: Intriguing properties of neural networks publication-title: Proc Int Conf Learn Representations – ident: ref133 doi: 10.1109/ICIP.2019.8802966 – ident: ref29 doi: 10.1109/CVPR.2017.434 – year: 0 ident: ref232 article-title: Deepfake Detection Challenge – year: 2012 ident: ref245 article-title: Counter-forensics: Attacking image forensics publication-title: Digital Image Forensics – ident: ref103 doi: 10.1109/TIFS.2015.2455334 – volume: 4 start-page: 899 year: 2009 ident: ref62 article-title: Accurate detection of demosaicing regularity for digital image forensics publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2009.2033749 – start-page: 1 year: 0 ident: ref273 article-title: Tampered speaker inconsistency detection with phonetically aware audio-visual features publication-title: Proc ICML Workshop Detecting Audio-Visual Fakes – ident: ref92 doi: 10.1109/WIFS.2012.6412641 |
| SSID | ssj0057614 |
| Score | 2.7059298 |
| Snippet | With the rapid progress in recent years, techniques that generate and manipulate multimedia content can now provide a very advanced level of realism. The... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 910 |
| SubjectTerms | Computer & video games Deception Deep learning deepfakes Digital forensics digital image forensics Elections Forensics Fraud Generative adversarial networks Image manipulation Information integrity Machine learning Media Multimedia video forensics Videos |
| Title | Media Forensics and DeepFakes: An Overview |
| URI | https://ieeexplore.ieee.org/document/9115874 https://www.proquest.com/docview/2438688689 |
| Volume | 14 |
| WOSCitedRecordID | wos000564205000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057614 issn: 1932-4553 databaseCode: RIE dateStart: 20070101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED624YM--GuK0yl98Emta5ukaXwb6vBpDlTYW0nTC4jSjXWb_75J2g1FEYQ-9CEXyl1yd1-Tuw_gPBOxDojJ3HQWMp9yHfsZMvQpzWIqkGnNM0c2wYfDZDwWowZcrWthENFdPsNr--rO8vOJWthfZT2zMVnCaROanMdVrdbK65q0OaxPkCOfMkZWBTKB6Jkl_jQyUDAyCNVhnPBbEHKsKj9csYsvg53_fdkubNd5pNevDL8HDSz2YetLd8E2XNhDGOlZ8s3C2KL0ZJF7d4jTgXzD8sbrF97j0roK_DiAl8H98-2DX1Mj-CoSbO7nEVIVYmjLSpEozSiRkTRgBDVNVJihNFAqkCZ2xyJLtGTCxmWLbgQLtBE5hFYxKfAIPDMDifOAKKo1JYSLKLc06EzynGpOkg6EK12lqu4bbukr3lOHHwKROv2mVr9prd8OXK5lplXXjD9Ht61G1yNrZXaguzJJWm-sMo0oSeLEPOL4d6kT2LRzV3f0utCazxZ4ChtqOX8tZ2duzXwCpr-6zw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQHv6Y4P_vgk1rXNknb-DbUMXHOgRP2VtL2AqJ0Y93mv2-SdkNRBKEPfci15XfJXX693B3AWcx96RC1c5Oxy2waSN-OkaFNaexTjkzKIDbNJoJuNxwMeK8Cl4tcGEQ0h8_wSt-aWH46TKb6V1lDLUwWBnQJlhmlnlNka83trto4u2UM2bMpY2SeIuPwhprkzz1FBj3FUQ3Lcb-5IdNX5YcxNh6mtfm_b9uCjXInaTUL1W9DBbMdWP9SX7AG5zoMIyzdfjNT2sgtkaXWLeKoJd4wv7aamfU008YCP3bhpXXXv2nbZXMEO_E4m9iphzRx0dWJpUgSySgRnlB0BCUNEzdGociUI5T39nkcSsG49sya33DmSCWyB9VsmOE-WOoJxE8dklApKSEB91LdCJ2JIKUyIGEd3DlWUVJWDtcNLN4jwyAcHhl8I41vVOJbh4uFzKiom_Hn6JpGdDGyBLMOR3OVROXSyiOPktAP1cUPfpc6hdV2_7ETde67D4ewpt9TnNg7gupkPMVjWElmk9d8fGLmzyeQvb4W |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Media+Forensics+and+DeepFakes%3A+An+Overview&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Verdoliva%2C+Luisa&rft.date=2020-08-01&rft.issn=1932-4553&rft.eissn=1941-0484&rft.volume=14&rft.issue=5&rft.spage=910&rft.epage=932&rft_id=info:doi/10.1109%2FJSTSP.2020.3002101&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTSP_2020_3002101 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon |