Adaptive Fuzzy Event-Triggered Sliding Mode Control for Uncertain Euler-lagrange Systems With Performance Specifications

This work addresses the design of an event-triggered finite-time singularity-free terminal sliding mode control (SMC) algorithm for tracking of Euler-Lagrange (EL) systems subject to state/error constraints, unstructured dynamics, and external disturbances. First, a novel sliding mode manifold (SMM)...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on fuzzy systems Ročník 31; číslo 5; s. 1 - 13
Hlavní autori: Wu, Yang, Yang, Xixiang, Yan, Huaicheng, Chadli, Mohammed, Wang, Yueying
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1063-6706, 1941-0034
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This work addresses the design of an event-triggered finite-time singularity-free terminal sliding mode control (SMC) algorithm for tracking of Euler-Lagrange (EL) systems subject to state/error constraints, unstructured dynamics, and external disturbances. First, a novel sliding mode manifold (SMM), not only devoted to the finite-time convergence of tracking errors to a small residual set around zero but also ensuring stringent constraint requirements, is proposed. The SMM is available for both constrained and unconstrained EL systems in a unified manner with no structural changes. Then, a fuzzy logic system (FLS) is introduced to dynamically compensate for uncertainties in the system. An extra robustifying term is added to the training policy to accelerate online learning. Also, an event-triggered mechanism is integrated into the tracker design procedure to reduce the frequency of signal transmission. Stability analysis proves that all closed-loop signals are uniformly bounded, and numerical simulations further illustrate the theoretical findings.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1063-6706
1941-0034
DOI:10.1109/TFUZZ.2022.3205777