Semi-Supervised Image Deraining Using Knowledge Distillation

Image deraining has achieved considerable progress based on supervised learning with synthetic training pairs, but is usually limited in handling real-world rainy images. Although semi-supervised methods are suggested to exploit real-world rainy images when training deep deraining models, their perf...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems for video technology Vol. 32; no. 12; pp. 8327 - 8341
Main Authors: Cui, Xin, Wang, Cong, Ren, Dongwei, Chen, Yunjin, Zhu, Pengfei
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1051-8215, 1558-2205
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Image deraining has achieved considerable progress based on supervised learning with synthetic training pairs, but is usually limited in handling real-world rainy images. Although semi-supervised methods are suggested to exploit real-world rainy images when training deep deraining models, their performances are still notably inferior. To address this crucial issue, this work proposes a semi-supervised image deraining network with knowledge distillation (SSID-KD) for better exploiting real-world rainy images. In particular, the consistency of feature distribution of rain streaks extracted from synthetic and real-world rainy images is enforced by adopting knowledge distillation. Moreover, as for the backbone in SSID-KD, we propose the multi-scale feature fusion module and the pyramid fusion module to better extract deep features of rainy images. SSID-KD can relieve the problem of over-deraining or under-deraining for real-world rainy images, while it can keep comparable performance with supervised deraining methods on several benchmark datasets. Extensive experiments on both synthetic and real-world rainy images have validated that our SSID-KD not only can achieve better deraining results than existing semi-supervised deraining methods but also are quantitatively comparable with state-of-the-art supervised deraining methods. Benefiting from the well exploration of real-world rainy images, our SSID-KD can obtain more visually plausible deraining results. The source code and trained models are publicly available at https://github.com/cuiyixin555/SSID-KD .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2022.3190516