Underwater Image Enhancement Quality Evaluation: Benchmark Dataset and Objective Metric

Due to the attenuation and scattering of light by water, there are many quality defects in raw underwater images such as color casts, decreased visibility, reduced contrast, et al. . Many different underwater image enhancement (UIE) algorithms have been proposed to enhance underwater image quality....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems for video technology Ročník 32; číslo 9; s. 5959 - 5974
Hlavní autoři: Jiang, Qiuping, Gu, Yuese, Li, Chongyi, Cong, Runmin, Shao, Feng
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1051-8215, 1558-2205
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Due to the attenuation and scattering of light by water, there are many quality defects in raw underwater images such as color casts, decreased visibility, reduced contrast, et al. . Many different underwater image enhancement (UIE) algorithms have been proposed to enhance underwater image quality. However, how to fairly compare the performance among UIE algorithms remains a challenging problem. So far, the lack of comprehensive human subjective user study with large-scale benchmark dataset and reliable objective image quality assessment (IQA) metric makes it difficult to fully understand the true performance of UIE algorithms. We in this paper make efforts in both subjective and objective aspects to fill these gaps. Firstly, we construct a new Subjectively-Annotated UIE benchmark Dataset (SAUD) which simultaneously provides real-world raw underwater images, readily available enhanced results by representative UIE algorithms, and subjective ranking scores of each enhanced result. Secondly, we propose an effective No-reference (NR) Underwater Image Quality metric (NUIQ) to automatically evaluate the visual quality of enhanced underwater images. Experiments on the constructed SAUD dataset demonstrate the superiority of our proposed NUIQ metric, achieving higher consistency with subjective rankings than 22 mainstream NR-IQA metrics. The dataset and source code will be made available at https://github.com/yia-yuese/SAUD-Dataset .
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2022.3164918