Deep Reinforcement Learning Based Optimization Algorithm for Permutation Flow-Shop Scheduling
As a new analogy paradigm of human learning process, reinforcement learning (RL) has become an emerging topic in computational intelligence (CI). The synergy between the RL and CI is an emerging way to develop efficient solution algorithms for solving complex combinatorial optimization (CO) problems...
Uložené v:
| Vydané v: | IEEE transactions on emerging topics in computational intelligence Ročník 7; číslo 4; s. 983 - 994 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2471-285X, 2471-285X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | As a new analogy paradigm of human learning process, reinforcement learning (RL) has become an emerging topic in computational intelligence (CI). The synergy between the RL and CI is an emerging way to develop efficient solution algorithms for solving complex combinatorial optimization (CO) problems like machine scheduling problem. In this paper, we proposed an efficient optimization algorithm based on Deep RL for solving permutation flow-shop scheduling problem (PFSP) to minimize the maximum completion time. Firstly, a new deep neural network (PFSPNet) is designed for the PFSP to achieve the end-to-end output without limitation of problem sizes. Secondly, an actor-critic method of RL is used to train the PFSPNet without depending on the collection of high-quality labelled data. Thirdly, an improvement strategy is designed to refine the solution provided by the PFSPNet. Simulation results and statistical comparison show that the proposed optimization algorithm based on deep RL can obtain better results than the existing heuristics in similar computational time for solving the PFSP. |
|---|---|
| AbstractList | As a new analogy paradigm of human learning process, reinforcement learning (RL) has become an emerging topic in computational intelligence (CI). The synergy between the RL and CI is an emerging way to develop efficient solution algorithms for solving complex combinatorial optimization (CO) problems like machine scheduling problem. In this paper, we proposed an efficient optimization algorithm based on Deep RL for solving permutation flow-shop scheduling problem (PFSP) to minimize the maximum completion time. Firstly, a new deep neural network (PFSPNet) is designed for the PFSP to achieve the end-to-end output without limitation of problem sizes. Secondly, an actor-critic method of RL is used to train the PFSPNet without depending on the collection of high-quality labelled data. Thirdly, an improvement strategy is designed to refine the solution provided by the PFSPNet. Simulation results and statistical comparison show that the proposed optimization algorithm based on deep RL can obtain better results than the existing heuristics in similar computational time for solving the PFSP. |
| Author | Lu, Jiawen Wang, Jingjing Pan, Zixiao Wang, Ling |
| Author_xml | – sequence: 1 givenname: Zixiao orcidid: 0000-0001-5153-5564 surname: Pan fullname: Pan, Zixiao email: pzx19@mails.tsinghua.edu.cn organization: Department of Automation, Tsinghua University, Beijing, China – sequence: 2 givenname: Ling orcidid: 0000-0003-1226-2801 surname: Wang fullname: Wang, Ling email: wangling@mail.tsinghua.edu.cn organization: Department of Automation, Tsinghua University, Beijing, China – sequence: 3 givenname: Jingjing orcidid: 0000-0003-3385-7572 surname: Wang fullname: Wang, Jingjing organization: Department of Automation, Tsinghua University, Beijing, China – sequence: 4 givenname: Jiawen orcidid: 0000-0002-1059-4522 surname: Lu fullname: Lu, Jiawen email: jiawen.lu@huawei.com organization: Huawei Noah's Ark Lab, Shenzhen, China |
| BookMark | eNp9kE9LAzEQxYMoWGu_gF4WPG9NNvsnOdZqtVCo2ApeJKTZ2TZld7NmU0Q_valbRDx4moF5v5k37wwd16YGhC4IHhKC-fXybjmeDiMckSHFnNEkPkK9KM5IGLHk5fhXf4oGbbvFGEc8IV7XQ6-3AE3wBLoujFVQQe2CGUhb63od3MgW8mDeOF3pT-m0qYNRuTZWu00VeH3wCLbauW4yKc17uNiYJlioDeS70m84RyeFLFsYHGofPU-82YdwNr-fjkezUHkjLlS5gjjLVwnIjBSKx6lSZEWAMgaYYMWB5SuSZmleZFmaFmkOfpASlUsqPUz76Krb21jztoPWia3Z2dqfFBGLMWWcxdSrok6lrGlbC4VorK6k_RAEi32S4jtJsU9SHJL0EPsDKd197KzU5f_oZYdqAPi5xRMeZymjX5zlhWM |
| CODEN | ITETCU |
| CitedBy_id | crossref_primary_10_7717_peerj_cs_2281 crossref_primary_10_1109_TETCI_2023_3326551 crossref_primary_10_1109_TII_2022_3189725 crossref_primary_10_1016_j_cor_2024_106817 crossref_primary_10_1016_j_jmsy_2023_06_007 crossref_primary_10_1109_TEVC_2022_3219238 crossref_primary_10_1016_j_asoc_2025_113705 crossref_primary_10_1016_j_eswa_2023_121756 crossref_primary_10_3390_biomimetics8080615 crossref_primary_10_1109_TETCI_2024_3402685 crossref_primary_10_1109_ACCESS_2025_3589064 crossref_primary_10_1109_TSMC_2024_3488205 crossref_primary_10_1016_j_swevo_2025_101951 crossref_primary_10_1109_TETCI_2025_3529876 crossref_primary_10_1109_TSMC_2024_3449413 crossref_primary_10_1016_j_knosys_2025_114221 crossref_primary_10_3390_biomimetics8060478 crossref_primary_10_1109_TETCI_2024_3372441 crossref_primary_10_3390_app15136995 crossref_primary_10_1109_TASE_2025_3536198 crossref_primary_10_3390_machines12100721 crossref_primary_10_3390_math13152381 crossref_primary_10_1016_j_eswa_2025_127989 crossref_primary_10_1016_j_engappai_2024_108775 crossref_primary_10_1109_TEVC_2022_3199045 crossref_primary_10_1016_j_jmsy_2025_06_005 crossref_primary_10_1109_TETCI_2024_3444698 crossref_primary_10_1109_JIOT_2025_3584811 crossref_primary_10_1016_j_compchemeng_2024_108748 crossref_primary_10_1016_j_jmsy_2024_10_026 crossref_primary_10_1016_j_jer_2025_02_005 crossref_primary_10_1109_TITS_2022_3189979 crossref_primary_10_1016_j_cie_2024_110855 crossref_primary_10_1016_j_cie_2024_110018 crossref_primary_10_1109_TETCI_2024_3369482 crossref_primary_10_1080_00207543_2024_2449240 crossref_primary_10_1016_j_swevo_2024_101658 crossref_primary_10_1080_0305215X_2024_2408477 crossref_primary_10_1016_j_cie_2025_111465 crossref_primary_10_1016_j_cie_2025_111466 crossref_primary_10_3389_fenvs_2022_1059451 crossref_primary_10_1038_s41534_025_01034_9 crossref_primary_10_1016_j_asoc_2022_109079 crossref_primary_10_1016_j_jmsy_2025_03_028 crossref_primary_10_1109_TETCI_2022_3221940 crossref_primary_10_1109_ACCESS_2024_3355269 crossref_primary_10_1016_j_asoc_2025_113223 crossref_primary_10_1016_j_cie_2024_109917 crossref_primary_10_1016_j_swevo_2024_101808 crossref_primary_10_1080_00207543_2024_2361441 crossref_primary_10_1080_03155986_2023_2287996 crossref_primary_10_1109_TETCI_2024_3361860 crossref_primary_10_1016_j_engappai_2025_111187 crossref_primary_10_1016_j_swevo_2024_101764 crossref_primary_10_1016_j_eswa_2025_127882 |
| Cites_doi | 10.1080/00207543.2020.1717008 10.1109/TSMC.2020.2969317 10.1016/j.cor.2007.05.005 10.1016/j.cor.2013.12.012 10.1080/00207543.2020.1870013 10.1016/j.cie.2020.107082 10.1016/j.compchemeng.2020.106982 10.1016/j.ijpe.2017.06.026 10.1016/j.promfg.2018.10.019 10.1016/j.asoc.2020.106208 10.1016/j.comnet.2021.107969 10.1016/j.ifacol.2017.08.2354 10.1016/j.cor.2010.02.006 10.1016/j.ins.2009.04.009 10.1016/j.bica.2018.07.004 10.1109/TETCI.2018.2868474 10.1016/0377-2217(93)90182-M 10.1109/TNNLS.2021.3068828 10.1016/0305-0483(83)90088-9 10.1109/TETCI.2018.2823329 10.1016/j.neucom.2019.02.003 10.1109/TETCI.2020.3027300 10.1007/BF00992696 10.1145/3005745.3005750 10.1016/j.cie.2020.106778 10.1080/00207540210161650 10.1016/j.ejor.2008.08.021 10.1287/mnsc.16.10.B630 10.2307/3008015 10.1287/moor.1.2.117 10.1016/j.ejor.2016.09.055 10.1109/TETCI.2020.3022372 10.1016/j.engappai.2019.02.013 10.1609/aaai.v35i13.17430 10.1109/TETCI.2020.3035407 10.1007/s11432-018-9728-x 10.1109/ACCESS.2020.2987820 10.1109/MCI.2018.2840738 10.1016/j.cor.2007.01.020 10.1109/70.864235 10.15837/ijccc.2007.3.2356 10.1016/j.omega.2005.03.003 10.1109/TCYB.2019.2939219 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TETCI.2021.3098354 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2471-285X |
| EndPage | 994 |
| ExternalDocumentID | 10_1109_TETCI_2021_3098354 9594768 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Fund for Distinguished Young Scholars of China grantid: 61525304 – fundername: National Natural Science Foundation of China grantid: 61873328 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE JAVBF OCL RIA RIE AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c295t-cdce47db5ea71fc946cc1b1e388e010c9e8db1676df7766f6de8e061cda3acdc3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 92 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732884400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2471-285X |
| IngestDate | Sun Jun 29 15:35:43 EDT 2025 Sat Nov 29 05:12:08 EST 2025 Tue Nov 18 22:43:33 EST 2025 Wed Aug 27 02:18:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-cdce47db5ea71fc946cc1b1e388e010c9e8db1676df7766f6de8e061cda3acdc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1059-4522 0000-0003-3385-7572 0000-0001-5153-5564 0000-0003-1226-2801 |
| PQID | 2840389843 |
| PQPubID | 4437216 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_9594768 proquest_journals_2840389843 crossref_citationtrail_10_1109_TETCI_2021_3098354 crossref_primary_10_1109_TETCI_2021_3098354 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on emerging topics in computational intelligence |
| PublicationTitleAbbrev | TETCI |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 chen (ref35) 2019 ref52 ref11 ref55 ref10 ref17 ref16 ref19 kwon (ref37) 2020 ref18 ref51 tom (ref21) 2018; 13 chen (ref41) 2017 ref46 ref45 vinyals (ref26) 2015 ref48 ref47 ref42 dai (ref34) 2017 ref44 ref43 kingma (ref54) 0 ref49 zhang (ref50) 2020 ref8 ref7 ref9 bello (ref31) 0 ref4 ref6 ref5 ref40 ref30 nazari (ref32) 2018 ref2 ref1 ref39 ref38 wang (ref3) 2020; 24 ma (ref33) 2020 ronald (ref53) 1992; 8 ref24 ref23 ref25 ref20 ref22 ref28 ref27 ref29 kool (ref36) 0 |
| References_xml | – ident: ref46 doi: 10.1080/00207543.2020.1717008 – ident: ref27 doi: 10.1109/TSMC.2020.2969317 – ident: ref17 doi: 10.1016/j.cor.2007.05.005 – start-page: 21188 year: 2020 ident: ref37 article-title: POMO: Policy optimization with multiple optima for reinforcement learning publication-title: Proc 34th Conf Neur Inf Process Syst – ident: ref19 doi: 10.1016/j.cor.2013.12.012 – ident: ref49 doi: 10.1080/00207543.2020.1870013 – ident: ref52 doi: 10.1016/j.cie.2020.107082 – ident: ref47 doi: 10.1016/j.compchemeng.2020.106982 – ident: ref9 doi: 10.1016/j.ijpe.2017.06.026 – ident: ref25 doi: 10.1016/j.promfg.2018.10.019 – ident: ref45 doi: 10.1016/j.asoc.2020.106208 – start-page: 1 year: 2020 ident: ref33 article-title: Combinatorial optimization by graph pointer networks and hierarchical reinforcement learning publication-title: Proc 34th AAAI Conf Artifi Intell – ident: ref48 doi: 10.1016/j.comnet.2021.107969 – start-page: 1 year: 0 ident: ref54 article-title: Adam: A method for stochastic optimization publication-title: Proc 3rd Int Conf Learn Representations – ident: ref44 doi: 10.1016/j.ifacol.2017.08.2354 – ident: ref18 doi: 10.1016/j.cor.2010.02.006 – ident: ref4 doi: 10.1016/j.ins.2009.04.009 – volume: 24 start-page: 479 year: 2020 ident: ref3 article-title: An estimation of distribution algorithm for mixed-variable newsvendor problems publication-title: IEEE Trans Evol Comput – ident: ref28 doi: 10.1016/j.bica.2018.07.004 – start-page: 1 year: 0 ident: ref36 article-title: Attention, learn to solve routing problems! publication-title: Proc 7th Int Conf Learn Representations – ident: ref30 doi: 10.1109/TETCI.2018.2868474 – ident: ref55 doi: 10.1016/0377-2217(93)90182-M – ident: ref38 doi: 10.1109/TNNLS.2021.3068828 – ident: ref8 doi: 10.1016/0305-0483(83)90088-9 – ident: ref29 doi: 10.1109/TETCI.2018.2823329 – ident: ref24 doi: 10.1016/j.neucom.2019.02.003 – ident: ref22 doi: 10.1109/TETCI.2020.3027300 – volume: 8 start-page: 229 year: 1992 ident: ref53 article-title: Simple statistical gradient following algorithms for connectionnist reinforcement learning publication-title: Mach Learn doi: 10.1007/BF00992696 – start-page: 6351 year: 2017 ident: ref34 article-title: Learning combinatorial optimization algorithms over graphs publication-title: Proc 31st Conf Neur Inf Proc Syst – start-page: 1/2 year: 2017 ident: ref41 article-title: Deep reinforcement learning for multi-resource multi-machine job scheduling publication-title: Proc IEEE 25th Int Conf Netw Protoc – ident: ref40 doi: 10.1145/3005745.3005750 – ident: ref51 doi: 10.1016/j.cie.2020.106778 – ident: ref13 doi: 10.1080/00207540210161650 – start-page: 1 year: 0 ident: ref31 article-title: Neural combinatorial optimization with reinforcement learning publication-title: Proc 5th Int Conf Learn Representations – ident: ref16 doi: 10.1016/j.ejor.2008.08.021 – start-page: 1621 year: 2020 ident: ref50 article-title: Learning to dispatch for job shop scheduling via deep reinforcement learning publication-title: Proc 34th Conf Neur Inf Process Syst – start-page: 6278 year: 2019 ident: ref35 article-title: Learning to perform local rewriting for combinatorial optimization publication-title: 33th Conf Neur Inf Proc Syst – ident: ref11 doi: 10.1287/mnsc.16.10.B630 – ident: ref12 doi: 10.2307/3008015 – ident: ref7 doi: 10.1287/moor.1.2.117 – ident: ref20 doi: 10.1016/j.ejor.2016.09.055 – ident: ref10 doi: 10.1109/TETCI.2020.3022372 – ident: ref42 doi: 10.1016/j.engappai.2019.02.013 – ident: ref39 doi: 10.1609/aaai.v35i13.17430 – start-page: 9839 year: 2018 ident: ref32 article-title: Reinforcement learning for solving the vehicle routing problem publication-title: Proc 32nd Conf Neur Inf Proc Syst – ident: ref23 doi: 10.1109/TETCI.2020.3035407 – ident: ref1 doi: 10.1007/s11432-018-9728-x – ident: ref43 doi: 10.1109/ACCESS.2020.2987820 – volume: 13 start-page: 55 year: 2018 ident: ref21 article-title: Recent trends in deep learning based natural language processing publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2018.2840738 – ident: ref15 doi: 10.1016/j.cor.2007.01.020 – ident: ref5 doi: 10.1109/70.864235 – start-page: 2692 year: 2015 ident: ref26 article-title: Pointer networks publication-title: Proc 29th Conf Neur Inf Proc Syst – ident: ref6 doi: 10.15837/ijccc.2007.3.2356 – ident: ref14 doi: 10.1016/j.omega.2005.03.003 – ident: ref2 doi: 10.1109/TCYB.2019.2939219 |
| SSID | ssj0002951354 |
| Score | 2.5284638 |
| Snippet | As a new analogy paradigm of human learning process, reinforcement learning (RL) has become an emerging topic in computational intelligence (CI). The synergy... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 983 |
| SubjectTerms | Algorithms Artificial neural networks Combinatorial analysis Completion time Computational intelligence Computing time Decoding Deep learning deep neural network Dynamic scheduling Encoding flow-shop scheduling improvement strategy Job shop scheduling Machine learning Optimization optimization algorithm Optimization algorithms Permutations Reinforcement learning |
| Title | Deep Reinforcement Learning Based Optimization Algorithm for Permutation Flow-Shop Scheduling |
| URI | https://ieeexplore.ieee.org/document/9594768 https://www.proquest.com/docview/2840389843 |
| Volume | 7 |
| WOSCitedRecordID | wos000732884400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2471-285X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002951354 issn: 2471-285X databaseCode: RIE dateStart: 20170101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4A8eDFR9CIotmDNy1QdrvdHvFBNDFIBA0X07S7UyABSnjo33d2W0iMxsRbk84k7Uw7883sPAi5TBKQEYDnxJzHDueR50TSBSdKQAAwraRd9_b25Hc6cjAIugVyve2FAQBbfAY1c2nP8nWq1iZVVg-8gCM8LpKi74usV2ubT2kiVGAe3_TFNIJ6_75_-4gRYNOtsUZgEhzffI9dpvLDAlu30t7_3wMdkL0cPtJWpu9DUoBZmbzfAczpC9ghqMrm-2g-N3VIb9BNafqMlmGat1zS1mSYLsar0ZQiPe2ibV5nB_K0PUk_nd4ondMeKlObKvXhEXlt4zs-OPnaBEehEFaO0gq4r2MPIt9NVMCFUm7sApMSMPpSAUgdu8IXOkExikRowBvCVTpiETKzY1KapTM4IdQ36Eti8K1AcYbeXSC8ETGLBPcRaTUqxN0INFT5THGz2mIS2tiiEYRWCaFRQpgroUKutjzzbKLGn9RlI_YtZS7xCqlu9BbmP90yRE9rxgVKzk5_5zoju2ZbfFa_VyWl1WIN52RHfazGy8WF_Z6-ALOIy_I |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9pADLdYV2l7WTfRqWx0u4e9dYGEu1wuj6wdKhqjaLCKlylK7hyKBARR2P79-S4BqVpVaW-RYkuJndg_-_wB8CnPUaWIoZcJkXlCpKGXqgC9NEeJyI1Wbt3b7SAaDtV0Go9q8PnQC4OIrvgMW_bSneWbQu9sqqwdh7EgePwMnodCdPyyW-uQUekQWOCh2HfG-HF78nVy2acYsBO0uB_bFMcD7-PWqfxjg51j6Z383yO9hlcVgGTdUuNvoIarOvy6QlyzH-jGoGqX8WPV5NQZ-0KOyrAbsg3LqumSdRezYjPf3i0Z0bMRWeddeSTPeovijze-K9ZsTOo0tk59dgo_e_SO1161OMHTJIStp41GEZksxDQKch0LqXWQBciVQoq_dIzKZIGMpMmjSMpcGqQbMtAm5Skx87dwtCpWeAYssvhLUfitUQtO_l0SwJEZT6WICGv5DQj2Ak10NVXcLrdYJC668OPEKSGxSkgqJTTg4sCzLmdqPEldt2I_UFYSb0Bzr7ek-u3uE_K1dmCgEvzd41wf4cX15PsgGfSH397DS7s7vqzma8LRdrPDczjWv7fz-80H9239BXcZzzk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning+Based+Optimization+Algorithm+for+Permutation+Flow-Shop+Scheduling&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Pan%2C+Zixiao&rft.au=Wang%2C+Ling&rft.au=Wang%2C+Jingjing&rft.au=Lu%2C+Jiawen&rft.date=2023-08-01&rft.pub=IEEE&rft.eissn=2471-285X&rft.volume=7&rft.issue=4&rft.spage=983&rft.epage=994&rft_id=info:doi/10.1109%2FTETCI.2021.3098354&rft.externalDocID=9594768 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon |