Object Detection Algorithm for Surface Defects Based on a Novel YOLOv3 Model
The surface defects of industrial structural parts have the characteristics of a large-scale span and many small objects, so a novel YOLOv3 model, the YOLOv3-ALL algorithm, is proposed in this paper to solve the problem of precise defect detection. The K-means++ algorithm is combined with the inters...
Uloženo v:
| Vydáno v: | Processes Ročník 10; číslo 4; s. 701 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.04.2022
|
| Témata: | |
| ISSN: | 2227-9717, 2227-9717 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The surface defects of industrial structural parts have the characteristics of a large-scale span and many small objects, so a novel YOLOv3 model, the YOLOv3-ALL algorithm, is proposed in this paper to solve the problem of precise defect detection. The K-means++ algorithm is combined with the intersection-over-union (IoU) and comparison of the prior box for clustering, which improves the clustering effect. The convolutional block attention module (CBAM) is embedded in the network, thus improving the ability of the network to obtain key information in the image. By adding fourth-scale prediction, the detection capability of a YOLOv3 network for small-object defects is greatly improved. A loss function is designed, which adds the generalized intersection-over-union (GIoU) loss combined with focal loss to solve the problems of L2 loss and class imbalance in samples. Experiments regarding contour-defect detection for stamping parts show that the mean average precision (mAP) of the YOLOV3-ALL algorithm reaches 75.05% in defect detection, which is 25.16% higher than that of the YOLOv3 algorithm. The average detection time is 39 ms/sheet. This proves that the YOLOv3-ALL algorithm has good real-time detection efficiency and high detection accuracy. |
|---|---|
| AbstractList | The surface defects of industrial structural parts have the characteristics of a large-scale span and many small objects, so a novel YOLOv3 model, the YOLOv3-ALL algorithm, is proposed in this paper to solve the problem of precise defect detection. The K-means++ algorithm is combined with the intersection-over-union (IoU) and comparison of the prior box for clustering, which improves the clustering effect. The convolutional block attention module (CBAM) is embedded in the network, thus improving the ability of the network to obtain key information in the image. By adding fourth-scale prediction, the detection capability of a YOLOv3 network for small-object defects is greatly improved. A loss function is designed, which adds the generalized intersection-over-union (GIoU) loss combined with focal loss to solve the problems of L2 loss and class imbalance in samples. Experiments regarding contour-defect detection for stamping parts show that the mean average precision (mAP) of the YOLOV3-ALL algorithm reaches 75.05% in defect detection, which is 25.16% higher than that of the YOLOv3 algorithm. The average detection time is 39 ms/sheet. This proves that the YOLOv3-ALL algorithm has good real-time detection efficiency and high detection accuracy. |
| Author | Qiao, Yujing Xiao, Jian Lv, Ning |
| Author_xml | – sequence: 1 givenname: Ning surname: Lv fullname: Lv, Ning – sequence: 2 givenname: Jian surname: Xiao fullname: Xiao, Jian – sequence: 3 givenname: Yujing orcidid: 0000-0002-1789-7286 surname: Qiao fullname: Qiao, Yujing |
| BookMark | eNptkE9LxDAQxYMouK578RMEvAnVSdJum-O6_oVqD-rBU0nTiXbpNmuSXfDbm2UFRZzLm-H9ZgbeEdkf7ICEnDA4F0LCxcoxgBRyYHtkxDnPE5mzfP9Xf0gm3i8glmSiyKYjUlbNAnWgVxiidHags_7Nui68L6mxjj6tnVEao2-i7-ml8tjSiCn6aDfY09eqrDaCPtgW-2NyYFTvcfKtY_Jyc_08v0vK6vZ-PisTzWUWEt1KhQrS1nCjoNCm0dJowzJoMjCMGaOZkmmTCy15mqk4YcGlbKeskC1KMSanu7srZz_W6EO9sGs3xJc1n2YCOCsKFqmzHaWd9d6hqVeuWyr3WTOot4HVP4FFGP7AugtqG0hwquv_W_kCIopuQA |
| CitedBy_id | crossref_primary_10_3390_logistics9020045 crossref_primary_10_1109_ACCESS_2023_3296530 crossref_primary_10_3390_s22103813 crossref_primary_10_1016_j_jmsy_2023_08_019 crossref_primary_10_1007_s00500_024_09799_5 crossref_primary_10_1016_j_engappai_2025_111278 crossref_primary_10_1088_2515_7620_acdece crossref_primary_10_3390_a17120574 crossref_primary_10_1109_ACCESS_2025_3526458 crossref_primary_10_3390_electronics11121882 crossref_primary_10_1016_j_heliyon_2024_e30957 crossref_primary_10_1016_j_measurement_2025_117168 crossref_primary_10_1109_ACCESS_2023_3339560 crossref_primary_10_3390_axioms12020160 |
| Cites_doi | 10.1109/TPAMI.2015.2389824 10.1109/CVPR.2017.106 10.1109/CVPR.2015.7298641 10.1109/CVPR.2019.00075 10.20944/preprints201908.0068.v1 10.1109/TIM.2019.2963555 10.3390/s20236993 10.3390/s20051459 10.1109/CVPR.2008.4587597 10.1007/s11771-016-3350-3 10.3390/a14090257 10.1109/ACCESS.2019.2939201 10.1007/s40031-017-0296-2 10.1109/CVPR.2017.690 10.1109/TII.2019.2917522 10.1109/CVPR.2016.91 10.1109/ACCESS.2018.2842028 10.1007/978-3-030-01234-2_1 10.1109/ACCESS.2018.2852663 10.1109/CVPRW.2018.00051 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SR 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ JG9 KB. LK8 M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.3390/pr10040701 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Materials Research Database Materials Science Database ProQuest Biological Science Collection ProQuest Biological Science Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2227-9717 |
| ExternalDocumentID | 10_3390_pr10040701 |
| GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ACIWK ACPRK ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I HCIFZ IAO IGS ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PQGLB PROAC RNS 7SR 8FD ABUWG AZQEC DWQXO GNUQQ JG9 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c295t-cd9aea04df2fa08cfbc9fcf150b50f11ffc1a94b73c9245ac1ae8299d6189de93 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000785112800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-9717 |
| IngestDate | Fri Jul 25 12:07:23 EDT 2025 Sat Nov 29 07:16:45 EST 2025 Tue Nov 18 21:47:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-cd9aea04df2fa08cfbc9fcf150b50f11ffc1a94b73c9245ac1ae8299d6189de93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1789-7286 |
| OpenAccessLink | https://www.proquest.com/docview/2653021881?pq-origsite=%requestingapplication% |
| PQID | 2653021881 |
| PQPubID | 2032344 |
| ParticipantIDs | proquest_journals_2653021881 crossref_primary_10_3390_pr10040701 crossref_citationtrail_10_3390_pr10040701 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Processes |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Wang (ref_6) 2020; 25 ref_13 ref_12 ref_19 ref_18 Cao (ref_7) 2018; 6 ref_16 ref_15 Huang (ref_10) 2018; 6 Zhang (ref_3) 2021; 7 He (ref_17) 2015; 37 Shi (ref_8) 2016; 23 Luo (ref_1) 2020; 69 ref_24 ref_23 Neogi (ref_4) 2017; 98 ref_22 ref_21 Wang (ref_11) 2020; 16 ref_20 Jiao (ref_14) 2019; 7 Haoran (ref_5) 2017; 38 Qianhui (ref_25) 2021; 11 ref_2 ref_26 ref_9 |
| References_xml | – volume: 37 start-page: 1904 year: 2015 ident: ref_17 article-title: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – ident: ref_9 – ident: ref_24 doi: 10.1109/CVPR.2017.106 – ident: ref_16 doi: 10.1109/CVPR.2015.7298641 – volume: 11 start-page: 2836 year: 2021 ident: ref_25 article-title: Research Progress of Loss Function in Object Detection publication-title: Comput. Sci. Appl. – ident: ref_26 doi: 10.1109/CVPR.2019.00075 – ident: ref_12 doi: 10.20944/preprints201908.0068.v1 – volume: 69 start-page: 626 year: 2020 ident: ref_1 article-title: Automated Visual Defect Detection for Flat Steel Surface: A Survey publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2019.2963555 – ident: ref_13 doi: 10.3390/s20236993 – ident: ref_21 – ident: ref_2 doi: 10.3390/s20051459 – ident: ref_15 doi: 10.1109/CVPR.2008.4587597 – volume: 23 start-page: 2867 year: 2016 ident: ref_8 article-title: Improved Sobel Algorithm for Defect Detection of Rail Surfaces with Enhanced Efficiency and Accuracy publication-title: J. Cent. South Univ. doi: 10.1007/s11771-016-3350-3 – ident: ref_22 doi: 10.3390/a14090257 – volume: 7 start-page: 144 year: 2021 ident: ref_3 article-title: Partial Application of Defect Detection in Industry publication-title: Int. Core J. Eng. – volume: 7 start-page: 128837 year: 2019 ident: ref_14 article-title: A survey of deep learning-based object detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939201 – volume: 98 start-page: 557 year: 2017 ident: ref_4 article-title: Defect detection of steel surfaces with global adaptive percentile thresholding of gradient image publication-title: J. Inst. Eng. (India) Ser. B doi: 10.1007/s40031-017-0296-2 – ident: ref_19 doi: 10.1109/CVPR.2017.690 – volume: 38 start-page: 2797 year: 2017 ident: ref_5 article-title: Novel defect recognition method based on adaptive global threshold for highlight metal surface publication-title: Chin. J. Sci. Instrum. – volume: 25 start-page: 697 year: 2020 ident: ref_6 article-title: Cathodic Copper Plate Surface Defect Detection based on Bird Swarm Algorithm with Chaotic Theory publication-title: J. Image Graph. – volume: 16 start-page: 141 year: 2020 ident: ref_11 article-title: Surface Defect Detection via Entity Sparsity Pursuit With Intrinsic Priors publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2917522 – ident: ref_18 doi: 10.1109/CVPR.2016.91 – volume: 6 start-page: 36235 year: 2018 ident: ref_7 article-title: Large-Complex-Surface Defect Detection by Hybrid Gradient Threshold Segmentation and Image Registration publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2842028 – ident: ref_23 doi: 10.1007/978-3-030-01234-2_1 – volume: 6 start-page: 37965 year: 2018 ident: ref_10 article-title: Automatic Visual Defect Detection Using Texture Prior and Low-Rank Representation publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2852663 – ident: ref_20 doi: 10.1109/CVPRW.2018.00051 |
| SSID | ssj0000913856 |
| Score | 2.289237 |
| Snippet | The surface defects of industrial structural parts have the characteristics of a large-scale span and many small objects, so a novel YOLOv3 model, the... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 701 |
| SubjectTerms | Algorithms Artificial intelligence Boxes Clustering Datasets Deep learning Defects Intersections Object recognition Semantics Surface defects Vision systems |
| Title | Object Detection Algorithm for Surface Defects Based on a Novel YOLOv3 Model |
| URI | https://www.proquest.com/docview/2653021881 |
| Volume | 10 |
| WOSCitedRecordID | wos000785112800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: M7P dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: KB. dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT8JAFH5R8aAHF9S4IJlED3KodmfmZEQhGhEat-ipmVVNEBAqR3-7M2VATYwXL02aeZk0fW_e1q_fA9gPdRbP3Jg73OB1QpeFjo4zwmEylkJyFpIcPH7frLZa-OGBJLbhNrSwyolPzB216HHTIz_yYzPfxsPYO-6_OWZqlPm6akdozELBsCT4OXQvmfZYDOcljuIxK2mgq_uj_sAwpGkz937GoZ9uOI8tjeX_PtUKLNmsEp2MzWAVZmS3CIvfuAaLsGpP8RAdWKrpyho028z0YdCZzHJIVheddJ70_tnzK9LZLLp5HyjKpV7PUR-opmOeQFqMolZvJDvosd1sjwJkJqp11uGuUb89PXfsfAWH-yTKHC4IldQNhfIVdTFXjBPFlU4RWeQqz1OKe5SErBpwXaVFVN9JrMOXiD1MhCTBBsx1e125CahaFTGjegOsghBHCrsCK0EiEVFf-T7dgsrkbafcko-bGRidVBchRjPpl2a2YG8q2x9TbvwqVZpoJLXHbph-qWP77-UdWPDNfww5BKcEc9ngXe7CPB9lL8NBGQq1eiu5LsPsZe2wnNuUuX7U9UpycZU8fgJY69aX |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS9xAFD7IKtg-tNVWatU6oIX6EEwml515EPGKi3F3obboU5yrCuvuuhtX-qf8jZ7JJl5AfPPBxzBDYDLffOeSM98BWI3Qi5d-ojzl6nUiX0Ye2hntSZMYbZSMeFE8_i-tN5vs5IS3J-CuugvjyiorTiyIWveUy5Gv08T1twkYCzb7157rGuX-rlYtNMawODT_bzFkG240dnF_f1G6v3e8c-CVXQU8RXmce0pzYYQfaUut8JmyUnGrLDpGMvZtEFirAsEjWQ8VxiaxwCfDkLR1EjCujRNfQsqfjBzYazDZbhy1Tx-yOk5lk8XJWAc1DLm_3h84TTY8WMFzy_ec-Atrtv_5vX2HL_Cp9JvJ1hjoMzBhurPw8Yma4izMlDw1JL9LMe21r5C2pMs0kV2TF0VnXbLVOcf15BdXBP118udmYIUyOF7UtZBttOqa4DRBmr2R6ZDTVtoahcT1jOt8g79vssY5qHV7XfMdSL2uEynwBcyGEYst8zWzmsc6FtRSKuZhrdrdTJXy6q7LRyfDMMshIXtEwjysPMztj0VFXpy1WCEgK4llmD1u_4_Xh5dh-uD4KM3SRvNwAT5Qd2ujKDhahFo-uDFLMKVG-eVw8LPEMIGzt4bLPXatM20 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bSxtBFD5ILGIf2nop1UY70Ar1Ycnu7CUzD6WoaWgwTQJVMU_rXKsQkzTZpPjX_HU9s9nVCuKbD31cZliYnW_Obb_5DsCnCKN46SfKU46vE_ky8tDPaE-axGijZMRz8vhZu97psPNz3luC2_IujKNVljYxN9R6pFyNvEYT198mYCyo2YIW0Ws0v45_e66DlPvTWrbTWEDk2Nz8wfRt-qXVwL3eo7T57eTou1d0GPAU5XHmKc2FEX6kLbXCZ8pKxa2yGCTJ2LdBYK0KBI9kPVSYp8QCnwxDA66TgHFtnBATmv9lDMkjWoHlXutHr39X4XGKmyxOFpqoYcj92nji9NnwkAUPveBDJ5B7tubr__mbvIFXRTxNDhYHYA2WzHAdXv6jsrgOa4X9mpLPhcj2_ga0u9JVoEjDZDkZbUgOBr9wPdnlNcE4nvycTaxQBsdzvgs5RG-vCU4TpDOamwHpd9vdeUhcL7nBJpw-yxrfQmU4Gpp3QOp1nUiBL2A2jFhsma-Z1TzWsaCWUrEF--VOp6qQXXfdPwYppl8OFek9Krbg493c8UJs5NFZ1RINaWFwpuk9FLafHv4AK4iRtN3qHL-HVeouc-Q8pCpUssnM7MALNc-uppPdAs4ELp4bLX8B9hc8LQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object+Detection+Algorithm+for+Surface+Defects+Based+on+a+Novel+YOLOv3+Model&rft.jtitle=Processes&rft.au=Lv%2C+Ning&rft.au=Xiao%2C+Jian&rft.au=Qiao%2C+Yujing&rft.date=2022-04-01&rft.issn=2227-9717&rft.eissn=2227-9717&rft.volume=10&rft.issue=4&rft.spage=701&rft_id=info:doi/10.3390%2Fpr10040701&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_pr10040701 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon |