Object Detection Algorithm for Surface Defects Based on a Novel YOLOv3 Model

The surface defects of industrial structural parts have the characteristics of a large-scale span and many small objects, so a novel YOLOv3 model, the YOLOv3-ALL algorithm, is proposed in this paper to solve the problem of precise defect detection. The K-means++ algorithm is combined with the inters...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Processes Ročník 10; číslo 4; s. 701
Hlavní autoři: Lv, Ning, Xiao, Jian, Qiao, Yujing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.04.2022
Témata:
ISSN:2227-9717, 2227-9717
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The surface defects of industrial structural parts have the characteristics of a large-scale span and many small objects, so a novel YOLOv3 model, the YOLOv3-ALL algorithm, is proposed in this paper to solve the problem of precise defect detection. The K-means++ algorithm is combined with the intersection-over-union (IoU) and comparison of the prior box for clustering, which improves the clustering effect. The convolutional block attention module (CBAM) is embedded in the network, thus improving the ability of the network to obtain key information in the image. By adding fourth-scale prediction, the detection capability of a YOLOv3 network for small-object defects is greatly improved. A loss function is designed, which adds the generalized intersection-over-union (GIoU) loss combined with focal loss to solve the problems of L2 loss and class imbalance in samples. Experiments regarding contour-defect detection for stamping parts show that the mean average precision (mAP) of the YOLOV3-ALL algorithm reaches 75.05% in defect detection, which is 25.16% higher than that of the YOLOv3 algorithm. The average detection time is 39 ms/sheet. This proves that the YOLOv3-ALL algorithm has good real-time detection efficiency and high detection accuracy.
AbstractList The surface defects of industrial structural parts have the characteristics of a large-scale span and many small objects, so a novel YOLOv3 model, the YOLOv3-ALL algorithm, is proposed in this paper to solve the problem of precise defect detection. The K-means++ algorithm is combined with the intersection-over-union (IoU) and comparison of the prior box for clustering, which improves the clustering effect. The convolutional block attention module (CBAM) is embedded in the network, thus improving the ability of the network to obtain key information in the image. By adding fourth-scale prediction, the detection capability of a YOLOv3 network for small-object defects is greatly improved. A loss function is designed, which adds the generalized intersection-over-union (GIoU) loss combined with focal loss to solve the problems of L2 loss and class imbalance in samples. Experiments regarding contour-defect detection for stamping parts show that the mean average precision (mAP) of the YOLOV3-ALL algorithm reaches 75.05% in defect detection, which is 25.16% higher than that of the YOLOv3 algorithm. The average detection time is 39 ms/sheet. This proves that the YOLOv3-ALL algorithm has good real-time detection efficiency and high detection accuracy.
Author Qiao, Yujing
Xiao, Jian
Lv, Ning
Author_xml – sequence: 1
  givenname: Ning
  surname: Lv
  fullname: Lv, Ning
– sequence: 2
  givenname: Jian
  surname: Xiao
  fullname: Xiao, Jian
– sequence: 3
  givenname: Yujing
  orcidid: 0000-0002-1789-7286
  surname: Qiao
  fullname: Qiao, Yujing
BookMark eNptkE9LxDAQxYMouK578RMEvAnVSdJum-O6_oVqD-rBU0nTiXbpNmuSXfDbm2UFRZzLm-H9ZgbeEdkf7ICEnDA4F0LCxcoxgBRyYHtkxDnPE5mzfP9Xf0gm3i8glmSiyKYjUlbNAnWgVxiidHags_7Nui68L6mxjj6tnVEao2-i7-ml8tjSiCn6aDfY09eqrDaCPtgW-2NyYFTvcfKtY_Jyc_08v0vK6vZ-PisTzWUWEt1KhQrS1nCjoNCm0dJowzJoMjCMGaOZkmmTCy15mqk4YcGlbKeskC1KMSanu7srZz_W6EO9sGs3xJc1n2YCOCsKFqmzHaWd9d6hqVeuWyr3WTOot4HVP4FFGP7AugtqG0hwquv_W_kCIopuQA
CitedBy_id crossref_primary_10_3390_logistics9020045
crossref_primary_10_1109_ACCESS_2023_3296530
crossref_primary_10_3390_s22103813
crossref_primary_10_1016_j_jmsy_2023_08_019
crossref_primary_10_1007_s00500_024_09799_5
crossref_primary_10_1016_j_engappai_2025_111278
crossref_primary_10_1088_2515_7620_acdece
crossref_primary_10_3390_a17120574
crossref_primary_10_1109_ACCESS_2025_3526458
crossref_primary_10_3390_electronics11121882
crossref_primary_10_1016_j_heliyon_2024_e30957
crossref_primary_10_1016_j_measurement_2025_117168
crossref_primary_10_1109_ACCESS_2023_3339560
crossref_primary_10_3390_axioms12020160
Cites_doi 10.1109/TPAMI.2015.2389824
10.1109/CVPR.2017.106
10.1109/CVPR.2015.7298641
10.1109/CVPR.2019.00075
10.20944/preprints201908.0068.v1
10.1109/TIM.2019.2963555
10.3390/s20236993
10.3390/s20051459
10.1109/CVPR.2008.4587597
10.1007/s11771-016-3350-3
10.3390/a14090257
10.1109/ACCESS.2019.2939201
10.1007/s40031-017-0296-2
10.1109/CVPR.2017.690
10.1109/TII.2019.2917522
10.1109/CVPR.2016.91
10.1109/ACCESS.2018.2842028
10.1007/978-3-030-01234-2_1
10.1109/ACCESS.2018.2852663
10.1109/CVPRW.2018.00051
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/pr10040701
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
Materials Science Database
ProQuest Biological Science Collection
ProQuest Biological Science
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2227-9717
ExternalDocumentID 10_3390_pr10040701
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
HCIFZ
IAO
IGS
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RNS
7SR
8FD
ABUWG
AZQEC
DWQXO
GNUQQ
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c295t-cd9aea04df2fa08cfbc9fcf150b50f11ffc1a94b73c9245ac1ae8299d6189de93
IEDL.DBID M7P
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000785112800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-9717
IngestDate Fri Jul 25 12:07:23 EDT 2025
Sat Nov 29 07:16:45 EST 2025
Tue Nov 18 21:47:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-cd9aea04df2fa08cfbc9fcf150b50f11ffc1a94b73c9245ac1ae8299d6189de93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1789-7286
OpenAccessLink https://www.proquest.com/docview/2653021881?pq-origsite=%requestingapplication%
PQID 2653021881
PQPubID 2032344
ParticipantIDs proquest_journals_2653021881
crossref_primary_10_3390_pr10040701
crossref_citationtrail_10_3390_pr10040701
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Processes
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wang (ref_6) 2020; 25
ref_13
ref_12
ref_19
ref_18
Cao (ref_7) 2018; 6
ref_16
ref_15
Huang (ref_10) 2018; 6
Zhang (ref_3) 2021; 7
He (ref_17) 2015; 37
Shi (ref_8) 2016; 23
Luo (ref_1) 2020; 69
ref_24
ref_23
Neogi (ref_4) 2017; 98
ref_22
ref_21
Wang (ref_11) 2020; 16
ref_20
Jiao (ref_14) 2019; 7
Haoran (ref_5) 2017; 38
Qianhui (ref_25) 2021; 11
ref_2
ref_26
ref_9
References_xml – volume: 37
  start-page: 1904
  year: 2015
  ident: ref_17
  article-title: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– ident: ref_9
– ident: ref_24
  doi: 10.1109/CVPR.2017.106
– ident: ref_16
  doi: 10.1109/CVPR.2015.7298641
– volume: 11
  start-page: 2836
  year: 2021
  ident: ref_25
  article-title: Research Progress of Loss Function in Object Detection
  publication-title: Comput. Sci. Appl.
– ident: ref_26
  doi: 10.1109/CVPR.2019.00075
– ident: ref_12
  doi: 10.20944/preprints201908.0068.v1
– volume: 69
  start-page: 626
  year: 2020
  ident: ref_1
  article-title: Automated Visual Defect Detection for Flat Steel Surface: A Survey
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2963555
– ident: ref_13
  doi: 10.3390/s20236993
– ident: ref_21
– ident: ref_2
  doi: 10.3390/s20051459
– ident: ref_15
  doi: 10.1109/CVPR.2008.4587597
– volume: 23
  start-page: 2867
  year: 2016
  ident: ref_8
  article-title: Improved Sobel Algorithm for Defect Detection of Rail Surfaces with Enhanced Efficiency and Accuracy
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-016-3350-3
– ident: ref_22
  doi: 10.3390/a14090257
– volume: 7
  start-page: 144
  year: 2021
  ident: ref_3
  article-title: Partial Application of Defect Detection in Industry
  publication-title: Int. Core J. Eng.
– volume: 7
  start-page: 128837
  year: 2019
  ident: ref_14
  article-title: A survey of deep learning-based object detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939201
– volume: 98
  start-page: 557
  year: 2017
  ident: ref_4
  article-title: Defect detection of steel surfaces with global adaptive percentile thresholding of gradient image
  publication-title: J. Inst. Eng. (India) Ser. B
  doi: 10.1007/s40031-017-0296-2
– ident: ref_19
  doi: 10.1109/CVPR.2017.690
– volume: 38
  start-page: 2797
  year: 2017
  ident: ref_5
  article-title: Novel defect recognition method based on adaptive global threshold for highlight metal surface
  publication-title: Chin. J. Sci. Instrum.
– volume: 25
  start-page: 697
  year: 2020
  ident: ref_6
  article-title: Cathodic Copper Plate Surface Defect Detection based on Bird Swarm Algorithm with Chaotic Theory
  publication-title: J. Image Graph.
– volume: 16
  start-page: 141
  year: 2020
  ident: ref_11
  article-title: Surface Defect Detection via Entity Sparsity Pursuit With Intrinsic Priors
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2917522
– ident: ref_18
  doi: 10.1109/CVPR.2016.91
– volume: 6
  start-page: 36235
  year: 2018
  ident: ref_7
  article-title: Large-Complex-Surface Defect Detection by Hybrid Gradient Threshold Segmentation and Image Registration
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2842028
– ident: ref_23
  doi: 10.1007/978-3-030-01234-2_1
– volume: 6
  start-page: 37965
  year: 2018
  ident: ref_10
  article-title: Automatic Visual Defect Detection Using Texture Prior and Low-Rank Representation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2852663
– ident: ref_20
  doi: 10.1109/CVPRW.2018.00051
SSID ssj0000913856
Score 2.289237
Snippet The surface defects of industrial structural parts have the characteristics of a large-scale span and many small objects, so a novel YOLOv3 model, the...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 701
SubjectTerms Algorithms
Artificial intelligence
Boxes
Clustering
Datasets
Deep learning
Defects
Intersections
Object recognition
Semantics
Surface defects
Vision systems
Title Object Detection Algorithm for Surface Defects Based on a Novel YOLOv3 Model
URI https://www.proquest.com/docview/2653021881
Volume 10
WOSCitedRecordID wos000785112800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M7P
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: KB.
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT8JAFH5R8aAHF9S4IJlED3KodmfmZEQhGhEat-ipmVVNEBAqR3-7M2VATYwXL02aeZk0fW_e1q_fA9gPdRbP3Jg73OB1QpeFjo4zwmEylkJyFpIcPH7frLZa-OGBJLbhNrSwyolPzB216HHTIz_yYzPfxsPYO-6_OWZqlPm6akdozELBsCT4OXQvmfZYDOcljuIxK2mgq_uj_sAwpGkz937GoZ9uOI8tjeX_PtUKLNmsEp2MzWAVZmS3CIvfuAaLsGpP8RAdWKrpyho028z0YdCZzHJIVheddJ70_tnzK9LZLLp5HyjKpV7PUR-opmOeQFqMolZvJDvosd1sjwJkJqp11uGuUb89PXfsfAWH-yTKHC4IldQNhfIVdTFXjBPFlU4RWeQqz1OKe5SErBpwXaVFVN9JrMOXiD1MhCTBBsx1e125CahaFTGjegOsghBHCrsCK0EiEVFf-T7dgsrkbafcko-bGRidVBchRjPpl2a2YG8q2x9TbvwqVZpoJLXHbph-qWP77-UdWPDNfww5BKcEc9ngXe7CPB9lL8NBGQq1eiu5LsPsZe2wnNuUuX7U9UpycZU8fgJY69aX
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS9xAFD7IKtg-tNVWatU6oIX6EEwml515EPGKi3F3obboU5yrCuvuuhtX-qf8jZ7JJl5AfPPBxzBDYDLffOeSM98BWI3Qi5d-ojzl6nUiX0Ye2hntSZMYbZSMeFE8_i-tN5vs5IS3J-CuugvjyiorTiyIWveUy5Gv08T1twkYCzb7157rGuX-rlYtNMawODT_bzFkG240dnF_f1G6v3e8c-CVXQU8RXmce0pzYYQfaUut8JmyUnGrLDpGMvZtEFirAsEjWQ8VxiaxwCfDkLR1EjCujRNfQsqfjBzYazDZbhy1Tx-yOk5lk8XJWAc1DLm_3h84TTY8WMFzy_ec-Atrtv_5vX2HL_Cp9JvJ1hjoMzBhurPw8Yma4izMlDw1JL9LMe21r5C2pMs0kV2TF0VnXbLVOcf15BdXBP118udmYIUyOF7UtZBttOqa4DRBmr2R6ZDTVtoahcT1jOt8g79vssY5qHV7XfMdSL2uEynwBcyGEYst8zWzmsc6FtRSKuZhrdrdTJXy6q7LRyfDMMshIXtEwjysPMztj0VFXpy1WCEgK4llmD1u_4_Xh5dh-uD4KM3SRvNwAT5Qd2ujKDhahFo-uDFLMKVG-eVw8LPEMIGzt4bLPXatM20
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bSxtBFD5ILGIf2nop1UY70Ar1Ycnu7CUzD6WoaWgwTQJVMU_rXKsQkzTZpPjX_HU9s9nVCuKbD31cZliYnW_Obb_5DsCnCKN46SfKU46vE_ky8tDPaE-axGijZMRz8vhZu97psPNz3luC2_IujKNVljYxN9R6pFyNvEYT198mYCyo2YIW0Ws0v45_e66DlPvTWrbTWEDk2Nz8wfRt-qXVwL3eo7T57eTou1d0GPAU5XHmKc2FEX6kLbXCZ8pKxa2yGCTJ2LdBYK0KBI9kPVSYp8QCnwxDA66TgHFtnBATmv9lDMkjWoHlXutHr39X4XGKmyxOFpqoYcj92nji9NnwkAUPveBDJ5B7tubr__mbvIFXRTxNDhYHYA2WzHAdXv6jsrgOa4X9mpLPhcj2_ga0u9JVoEjDZDkZbUgOBr9wPdnlNcE4nvycTaxQBsdzvgs5RG-vCU4TpDOamwHpd9vdeUhcL7nBJpw-yxrfQmU4Gpp3QOp1nUiBL2A2jFhsma-Z1TzWsaCWUrEF--VOp6qQXXfdPwYppl8OFek9Krbg493c8UJs5NFZ1RINaWFwpuk9FLafHv4AK4iRtN3qHL-HVeouc-Q8pCpUssnM7MALNc-uppPdAs4ELp4bLX8B9hc8LQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object+Detection+Algorithm+for+Surface+Defects+Based+on+a+Novel+YOLOv3+Model&rft.jtitle=Processes&rft.au=Lv%2C+Ning&rft.au=Xiao%2C+Jian&rft.au=Qiao%2C+Yujing&rft.date=2022-04-01&rft.issn=2227-9717&rft.eissn=2227-9717&rft.volume=10&rft.issue=4&rft.spage=701&rft_id=info:doi/10.3390%2Fpr10040701&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_pr10040701
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon