On the Partial Decoding Delay of Sparse Network Coding
Sparse network coding (SNC) is a promising technique for reducing the complexity of random linear network coding (RLNC), by selecting a sparse coefficient matrix to code the packets. However, the performance of SNC for the average decoding delay (ADD) of the packets is still unknown. We study the pe...
Uložené v:
| Vydané v: | IEEE communications letters Ročník 22; číslo 8; s. 1668 - 1671 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1089-7798, 1558-2558 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Sparse network coding (SNC) is a promising technique for reducing the complexity of random linear network coding (RLNC), by selecting a sparse coefficient matrix to code the packets. However, the performance of SNC for the average decoding delay (ADD) of the packets is still unknown. We study the performance of ADD and propose a Markov chain model to analyze this SNC metric. This model provides a lower bound for decoding delay of a generation as well as a lower bound for decoding delay of a portion of a generation. Results show that although RLNC provides a better decoding delay of an entire generation, SNC outperforms RLNC in terms of ADD per packet. Sparsity of the coefficient matrix is a key parameter for ADD per packet to transmit stream data. The proposed model enables us to select the appropriate degree of sparsity based on the required ADD. Numerical results validate that the proposed model would enable a precise evaluation of SNC technique behavior. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1089-7798 1558-2558 |
| DOI: | 10.1109/LCOMM.2018.2840139 |