A Hardware-Efficient Analog Network Structure for Hybrid Precoding in Millimeter Wave Systems

Hybrid precoding has been recently proposed as a cost-effective transceiver solution for millimeter wave systems. While the number of radio frequency chains has been effectively reduced in existing works, a large number of high-precision phase shifters are still needed. Practical phase shifters are...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in signal processing Vol. 12; no. 2; pp. 282 - 297
Main Authors: Xianghao Yu, Jun Zhang, Letaief, Khaled B.
Format: Journal Article
Language:English
Published: New York IEEE 01.05.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1932-4553, 1941-0484
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hybrid precoding has been recently proposed as a cost-effective transceiver solution for millimeter wave systems. While the number of radio frequency chains has been effectively reduced in existing works, a large number of high-precision phase shifters are still needed. Practical phase shifters are with coarsely quantized phases, and their number should be reduced to a minimum due to cost and power consideration. In this paper, we propose a novel hardware-efficient implementation for hybrid precoding, called the fixed phase shifter (FPS) implementation. It only requires a small number of phase shifters with quantized and fixed phases. To enhance the spectral efficiency, a switch network is put forward to provide dynamic connections from phase shifters to antennas, which is adaptive to the channel states. An effective alternating minimization algorithm is developed with closed-form solutions in each iteration to determine the hybrid precoder and the states of switches. Moreover, to further reduce the hardware complexity, a group-connected mapping strategy is proposed to reduce the number of switches. Simulation results show that the FPS fully-connected hybrid precoder achieves higher hardware efficiency with much fewer phase shifters than existing proposals. Furthermore, the group-connected mapping achieves a good balance between spectral efficiency and hardware complexity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1932-4553
1941-0484
DOI:10.1109/JSTSP.2018.2814009