Configuring Intelligent Reflecting Surface With Performance Guarantees: Optimal Beamforming

This work proposes linear time strategies to optimally configure the phase shifts for the reflective elements of an intelligent reflecting surface (IRS). Specifically, we show that the binary phase beamforming can be optimally solved in linear time to maximize the received signal-to-noise ratio (SNR...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of selected topics in signal processing Ročník 16; číslo 5; s. 967 - 979
Hlavní autoři: Zhang, Yaowen, Shen, Kaiming, Ren, Shuyi, Li, Xin, Chen, Xin, Luo, Zhi-Quan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1932-4553, 1941-0484
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This work proposes linear time strategies to optimally configure the phase shifts for the reflective elements of an intelligent reflecting surface (IRS). Specifically, we show that the binary phase beamforming can be optimally solved in linear time to maximize the received signal-to-noise ratio (SNR). For the general <inline-formula><tex-math notation="LaTeX">K</tex-math></inline-formula>-ary phase beamforming, we develop a linear time approximation algorithm that guarantees performance within a constant fraction <inline-formula><tex-math notation="LaTeX">(1+\cos (\pi /K))/2</tex-math></inline-formula> of the global optimum, e.g., it can attain over 85% of the optimal performance for the quadrature beamforming with <inline-formula><tex-math notation="LaTeX">K=4</tex-math></inline-formula>. According to the numerical results, the proposed approximation algorithm for discrete IRS beamforming outperforms the existing algorithms significantly in boosting the received SNR.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1932-4553
1941-0484
DOI:10.1109/JSTSP.2022.3176479