Configuring Intelligent Reflecting Surface With Performance Guarantees: Optimal Beamforming
This work proposes linear time strategies to optimally configure the phase shifts for the reflective elements of an intelligent reflecting surface (IRS). Specifically, we show that the binary phase beamforming can be optimally solved in linear time to maximize the received signal-to-noise ratio (SNR...
Gespeichert in:
| Veröffentlicht in: | IEEE journal of selected topics in signal processing Jg. 16; H. 5; S. 967 - 979 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1932-4553, 1941-0484 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This work proposes linear time strategies to optimally configure the phase shifts for the reflective elements of an intelligent reflecting surface (IRS). Specifically, we show that the binary phase beamforming can be optimally solved in linear time to maximize the received signal-to-noise ratio (SNR). For the general <inline-formula><tex-math notation="LaTeX">K</tex-math></inline-formula>-ary phase beamforming, we develop a linear time approximation algorithm that guarantees performance within a constant fraction <inline-formula><tex-math notation="LaTeX">(1+\cos (\pi /K))/2</tex-math></inline-formula> of the global optimum, e.g., it can attain over 85% of the optimal performance for the quadrature beamforming with <inline-formula><tex-math notation="LaTeX">K=4</tex-math></inline-formula>. According to the numerical results, the proposed approximation algorithm for discrete IRS beamforming outperforms the existing algorithms significantly in boosting the received SNR. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1932-4553 1941-0484 |
| DOI: | 10.1109/JSTSP.2022.3176479 |