An Improved Spatial Branch-and-Bound Algorithm for Non-Convex Optimal Electricity-Gas Flow
Addressing non-convexity plays a fundamental role in solving the optimal electricity-gas flow models. In this paper, an improved spatial branch-and-bound algorithm is proposed to solve the non-convex problem, which is formulated as a mixed-integer bilinear programming, for its exact solution. The co...
Uloženo v:
| Vydáno v: | IEEE transactions on power systems Ročník 37; číslo 2; s. 1326 - 1339 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0885-8950, 1558-0679 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Addressing non-convexity plays a fundamental role in solving the optimal electricity-gas flow models. In this paper, an improved spatial branch-and-bound algorithm is proposed to solve the non-convex problem, which is formulated as a mixed-integer bilinear programming, for its exact solution. The core of the algorithm is to divide the non-convex model into convex and small sub-models by branching on specific continuous variables, so that the non-convex problem can be equivalent to a rooted tree for exploration. The exactness of the algorithm is guaranteed by the same criterion as the classical branch-and-bound algorithm. To alleviate the computational burden, a novel two-stage spatial branching strategy is developed to improve the effectiveness and efficiency of the branching operations. The performance of the proposed algorithm is verified on two integrated electricity-gas systems with different sizes. Numerical results demonstrate that our method achieves a balance among feasibility, optimality, and efficiency. The comparison with another 6 convexification-based methods, 3 state-of-the-art non-convex optimization solvers, and 2 spatial branch-and-bound algorithms with classical branching rules further shows the superiority of our algorithm. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-8950 1558-0679 |
| DOI: | 10.1109/TPWRS.2021.3101883 |